Here’s What I’'ve Learned: Asking Questions that Reveal
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Robots can learn from humans by asking questions. In these questions, the robot demonstrates a few different
behaviors and asks the human for their favorite. But how should robots choose which questions to ask?
Today’s robots optimize for informative questions that actively probe the human’s preferences as efficiently
as possible. But while informative questions make sense from the robot’s perspective, human onlookers may
find them arbitrary and misleading. For example, consider an assistive robot learning to put away the dishes.
Based on your answers to previous questions this robot knows where it should stack each dish; however, the
robot is unsure about right height to carry these dishes. A robot optimizing only for informative questions
focuses purely on this height: it shows trajectories that carry the plates near or far from the table, regardless
of whether or not they stack the dishes correctly. As a result, when we see this question, we mistakenly think
that the robot is still confused about where to stack the dishes! In this article, we formalize active preference-
based learning from the human’s perspective. We hypothesize that—from the human’s point-of-view —the
robot’s questions reveal what the robot has and has not learned. Our insight enables robots to use questions
to make their learning process transparent to the human operator. We develop and test a model that robots
can leverage to relate the questions they ask to the information these questions reveal. We then introduce
a tradeoff between informative and revealing questions that considers both human and robot perspectives:
a robot that optimizes for this tradeoff actively gathers information from the human while simultaneously
keeping the human up to date with what it has learned. We evaluate our approach across simulations, online
surveys, and in-person user studies. We find that robots, which consider the human’s point of view learn
just as quickly as state-of-the-art baselines while also communicating what they have learned to the human
operator. Videos of our user studies and results are available here: https://youtu.be/tCéy_jHN7Vw.
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1 INTRODUCTION

Imagine that you are teaching a robot arm to put away the dishes (see Figure 1). You want the robot
to carry these dishes close to the table—so they will not break if they fall—and to stack the dishes
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Fig. 1. A robot asking multiple-choice questions to learn the human’s reward function. The human’s true
reward is parameterized by 6, while the robot’s current understanding of that reward is captured by z*. On
the right we show the robot’s full trajectory for each question. Within the state-of-the-art, the robot opti-
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mizes for questions that maximize its information gained about 8*. We formulate the opposite
perspective, in which the robot purposely chooses Revealing questions to communicate its learning z* to
the human. We then combine both objectives: robots tradeoff between robot and

human perspectives, and select questions that both elicit user information and reveal the robot’s learning.
Within this example the robot’s question should emphasize that it already knows to stack the dishes while
gathering clear feedback about how high to carry these dishes.

on top of each other. A natural way for the robot to learn your preferences is by asking questions.
In each question, the robot shows you two different ways to put away the dishes and asks for your
favorite. Based on your answers so far, the robot is (a) confident where it should stack the dishes
and (b) unsure how high above the table to carry these dishes. Of course, the robot knows what it
has learned—but how do you know whether or not this robot understands your preferences?

Recent work on active preference-based learning explores how robots can leverage questions
to learn from humans [9-11, 14, 18, 23, 43]. Within the state-of-the-art the robot actively selects
questions to gather as much as information as possible. Although this makes sense from the robot’s
point of view, we will experimentally demonstrate across multiple environments that it results
in questions that humans find misleading. In our running example shown in Figure 1, the most
informative question is for the robot to show one trajectory that moves close to the table (and then
stacks the dishes), and a second trajectory that always remains high above the table (and does not
stack the dishes as a result). This question is informative because it elicits clear feedback about
the preferred height, which the robot is currently unsure about. But the question also misleads the
human: When we see this question, we incorrectly think the robot is still unsure about both the
preferred height and whether to stack the dishes.

In this article, we consider how robot questions influence the human’s perception of the robot.
Our key insight is that—from the human’s perspective—

The questions that the robot asks reveal what the robot does and does not know.

Applying this insight enables robots to actively pick questions that keep the human up-to-date
with the robot’s learning. Put another way, now the robot can purposely select questions to reveal
its learning process. Returning to our running example in Figure 1, the most revealing question is
for the robot to show two similar trajectories that both accurately stack the dishes while carrying
those dishes at varying heights. This question is revealing because it expresses what the robot
knows (stacking the dishes) and what the robot is unsure about (the carrying height). But while
this question no longer misleads the human, the human’s answer to this question is not very useful
for the robot. Looking again at Figure 1, no matter which trajectory we choose, our answer tells
the robot no new information about whether to carry the dishes high or low.

We therefore introduce a spectrum between the robot’s perspective (optimizing for informative
questions) and the human’s perspective (optimizing for revealing questions). Taking both human
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and robot perspectives into account leads to informative and revealing questions. Returning to our
example, an informative and revealing question consists of one trajectory that always remains
close to the table and stacks the dishes, and a second trajectory that initially carries the dishes
high in the air before returning to the table to stack the dishes. This question gathers meaning-
ful information about the human’s preferred height (i.e., the two options have different heights),
but simultaneously reveals what the robot currently knows (i.e., both options correctly stack the
dishes). Hence, the benefit of our proposed approach is that it identifies questions which efficiently
gain information while also communicating what the robot is learning back to the user. As we will
show, this lets the robot learn just as efficiently as state-of-the-art active learning baselines, but
now with the added dimension of proactively enabling humans to reason over what their robot is
learning.

Communicating what the robot is learning is an important step toward interpretable human-
robot interaction [4]. As the human infers what their robot partner has learned (and what it is
still confused about) the human can more confidently predict how the robot will behave. More
generally, we view the questions that the robot asks as one avenue toward establishing trust and
making robot learning transparent to human operators. In practice, our approach has two key
benefits that both stem from communicating the robot’s learning back to the human. First, the
human can now determine when the robot has learned the right thing—and choose to deploy
the robot accordingly. Second, the human can now infer which parts of the task the robot is still
confused about, and focus additional teaching on these features. Overall, we make the following
contributions:

Formalizing Revealing Questions. We formulate how humans learn from robot’s questions,
and introduce a cognitive model that robots can leverage to relate the questions they ask to the
information those questions reveal. We then conduct an online survey to test our model and verify
that revealing questions successfully convey robot learning to the human.

Combining Informative and Revealing Questions. We derive an optimization approach for
selecting informative and revealing questions that gather human preferences while conveying
robot learning. This proposed approach considers both human and robot perspectives, and allows
designers to tradeoff along a spectrum between both extremes. We theoretically prove that this
algorithm converges toward asking revealing questions over repeated interactions.

Comparing to Baselines. We conduct a series of simulations and in-person user studies to com-
pare our approach to state-of-the-art alternatives. We find that when robots only optimize for
informative questions, these questions tell the human no more about the robot’s learning than
simply asking random questions. Conversely, when robots only optimize for revealing questions,
these questions tell the robot no more about the human’s preferences than random questions. But
when the robot leverages our informative and revealing approach, it satisfies both objectives: the
robot learns efficiently while also communicating what it has learned.

2 RELATED WORK

Robots learn what their human partner wants by observing the human’s inputs. These inputs can
take many different forms [25], from physical demonstrations to verbal commands to pairwise
comparisons. We focus on the latter, and explore how robots should ask questions to learn the
human’s underlying reward function. We consider the bi-directional flow of information: the robot
learning from the human and the human inferring what their robot is learning. Our research builds
on prior work that studies how robots actively select questions, as well as research on how robots
communicate what they have learned to nearby human operators.
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2.1 Learning Reward Functions from Questions

Inverse Reinforcement Learning. We consider scenarios where the human has in mind a re-
ward function, and the robot is trying to learn this reward function from the human’s behavior.
One common approach here is for the human to input expert demonstrations — i.e., for the human
to kinesthetically show the robot how it should perform the task. Inverse reinforcement learning
enables robots to infer the human’s reward function from these demonstrations [1, 36, 41, 53]. But
often it is challenging for humans to accurately demonstrate what they want. Physical limitations
constrain the human [26, 50], particularly when guiding the robot requires carefully coordinating
the motion of multiple interconnected joints [3, 5]. Cognitive biases also affect the quality of hu-
man demonstrations: for instance, people prefer for autonomous cars to be more risk-averse than
their own driving demonstrations [8, 29]. So while we draw from previous work on inverse rein-
forcement learning, we now apply this theory to a different form of human input—the human’s
answers to the robot’s questions.

Active Preference-Based Learning. Each question consists of the robot showing the human
a few trajectories and asking the human to compare these options. For example, the robot
could display three or more trajectories, and ask the human to rank these trajectories in or-
der of personal preference [11, 24]. Similar to prior research, within our simulations and user
studies, we specifically consider pairwise comparisons where the robot only shows two options
[9, 10, 14, 23, 25, 43, 50, 52]. Of course, there are an infinite number of possible questions; how
does the robot choose which of these questions to ask? Existing work on active preference-based
learning enables the robot to intelligently select questions that efficiently learn about the human’s
reward [2, 18, 38, 46, 48]. One state-of-the-art approach here is for the robot to select questions
that optimize for the expected information gain [9, 10], so that no matter which answer the hu-
man chooses, the robot gathers meaningful feedback about the human’s reward function. Robots
proactively select these questions to accelerate their learning and reduce the number of queries
the human must answer.

User-Friendly Questions. Prior work on human-human teaching emphasizes that poorly crafted
questions can lead to confusion [40, 49]. Unfortunately, the questions generated by a robot trying
to optimize its learning may be misleading or confusing to the human. Most related to our approach
is research on how robots that actively choose questions should account for the human-in-the-loop.
Recent works recognize that human answers are inevitably noisy and imperfect [21], and so we can
improve both the robot’s learning and human’s experience by purposely asking easier questions
[9, 10, 13, 39], by allowing users to explain their answers [7], or by explicitly accounting for the
time constraints that humans face when answering questions [12]. Each of these works takes a
step toward user-friendly interactions. But while today’s robots account for how humans answer
questions, they still only consider one direction of information transfer: from the human to the robot.
Unlike prior research, we now focus on bi-direction information transfer. We hypothesize that the
questions that the robots asks influence what the human thinks the robot knows—enabling us to
close the loop and leverage questions to convey robot learning back to the human.

2.2 Communicating Robot Learning through Robot Motions

Legible Motion. Our key insight is that humans make inferences about the robot’s latent state
based on the robot’s questions. Recalling that these questions are composed of a set of trajectories,
our insight claims that humans infer what the robot is thinking based on the motions the robot is
showing. Prior work from cognitive science suggests that humans naturally ascribe goals, plans,
and objectives to robot motion [6, 15, 20, 44]. For instance, if we see a robot arm moving directly
toward a cup, we may infer that the robot wants to reach that cup. Recent research within robotics
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Table 1. Key Variables and their Definition

(1]

Ee robot trajectory
Q=1{&,...,ENn} question where the robot shows N trajectories &i,.. ., &N
in our experiments we set N = 2 and allowed “I don’t know” responses
q € Q human’s answer to the robot’s question
0* € R? human’s preferences the robot is trying to learn
br(0) robot’s learned belief over what 0" is
z" € Z parameterization of the robot’s belief bg
bs(z) humans’s belief over what z* is, i.e., over what the robot has learned

leverages this insight to purposely choose motions that communicate the robot’s reward function
[19, 22, 31] or the robot’s capabilities [30, 47]. Similarly, our approach takes advantage of the
robot’s behavior (i.e., the different trajectories in each question) to communicate what the robot
has learned (i.e., the robot’s estimate of the human’s reward function).

Multimodal Feedback. We recognize that the robot’s physical behavior is one of many modal-
ities for conveying feedback to the human. Robots can also leverage separate channels such as
augmented reality [42, 51] or natural language [35, 47] to relay information. But these different
feedback modalities are not mutually exclusive; instead, they form complementary ways to intu-
itively bring the human into the learning loop. Although here we will specifically study how the
robot’s questions (i.e., the robot’s physical behavior) communicates information, we ultimately see
this feedback as part of the larger spectrum of interpretable robot learning [4].

3 FORMALIZING QUESTIONS FROM ROBOT AND HUMAN PERSPECTIVES

In this section, we formulate our problem setting from Figure 1. Our goal is for a robot partner to
select questions that proactively gather information from the human while also revealing what the
robot is learning. We start with the robot’s perspective: This robot is asking questions to learn the
user’s preferred behavior. We then introduce the human’s perspective: This human reasons about
what the robot has learned based on the questions the robot asks. We list the key variables we use
to characterize our bi-directional information exchange in Table 1.

Robot Perspective. The robot is learning how it should behave. More formally, the robot is trying
to learn the human’s reward function R. This reward function assigns scores to trajectories ¢ € =,
so that learning R enables the robot to identify the optimal, highest scoring trajectory to deploy.

Following prior work on inverse reinforcement learning [1, 36, 53], we formulate the human’s
reward function as a linear combination of features f weighted by preferences 6:

R(,0)=0-f(&), ol =1. (1)

Here, the features f : 2 — R? are task-related metrics that the robot measures. For instance, in
our motivating example one feature is the height of the robot’s end-effector. Although the robot
knows these features, it does not know which features the human prefers. Preferences are captured
by the unit vector € R¥, and we denote the human’s true preferences as 0*. Returning to our
motivating example, the human prefers for the robot to move close to the table. Put in terms of
Equation (1), this translates to 0 < 0, which indicates that higher trajectories (i.e., trajectories

height
with an increased height feature) will receive negative rewards from the human.

Questions. When the robot first interacts with a user it does not know their actual preferences
0*. But robots can intuitively learn the user’s preferences by asking questions. These questions
are multiple choice: The robot shows the human N different trajectories, and asks the human to
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pick one trajectory that best matches their preferred behavior. Here, Q = {&1,...,¢éN} € Q is the
robot’s question and g € Q is the human’s answer. Let Q be a discrete set of all questions available
to the robot: similar to [9, 43], we generate these questions offline by randomly sampling and
pairing robot trajectories.! The robot reasons across the questions it has asked and the answers
the human has given to infer a continuous probability distribution over what 6" is. We refer to this
distribution as the robot’s belief. After i questions, the robot’s belief is:

bgl(e)zp(elQl’”-’Qi’ql""’qi)' (2)

By definition, b;;’ 1(0) expresses how likely it is that the user’s true preferences are 0 (i.e., the
likelihood that 6* = 0) given the robot questions Qy, . .., Q; and the human answers ¢, . . ., q;.

Human Perspective. Prior work studies Equations (1) and (2), and shows how the robot should
actively select questions to infer 6% [2, 7, 10, 21, 43]. Moving beyond prior work, we now consider
how these questions affect the human’s perception of the robot’s learning. When the robot asks
questions about a specific feature of the task (i.e., each £ € Q carries the dishes at a different
height), the human thinks the robot is uncertain about this feature. Conversely, when the robot
displays questions that keep specific features consistent (i.e., the robot stacks the dishes in every
& € Q), the human may guess the robot is confident about this feature.

We hypothesize that the questions the robot asks reveal what the robot has learned. Recall
that the robot is learning a belief bg. If the human could directly observe this belief, the human
would understand exactly what the robot has learned. In practice, however, 6 € R9 is a continuous
variable, and so the robot’s belief over 6 is a continuous probability distribution. We therefore
introduce Z c R™, a compact, low-dimensional representation of the robot’s belief space. Here,
different values z € Z are associated with different beliefs bg, and the robot’s current belief b,’k
is parameterized by z*. To give an example, consider trying to model b;{ as a normal distribution,
where z* is a vector that contains the mean and standard deviation of this model. In this example,
z* is a low-dimensional representation because it takes the continuous probability distribution b;e
and compactly approximates it with 2d parameters.

In the same way that humans cannot directly observe the robot’s learning, users cannot directly
observe z*. But humans can infer a probability distribution over what z* is based on the questions
the robot has asked. We refer to this distribution as the human’s belief:

b(iﬁl(z) =Pz |0Q1,-.,0Qi,q1,---5qi-1)- 3)

Intuitively, bg/(z) expresses how likely it is from the human’s perspective that the robot has
learned z (i.e., the likelihood that z* = z) given the robot’s questions and the human’s previous
answers.

Representing Robot Learning. Our proposed approach is not tied to any specific choice of Z. But,
for the sake of clarity, we here present one representation that we will leverage in our experiments.

Instead of thinking about the robot’s learning directly in terms of the robot’s belief b, we focus
on the behavior that this belief induces. For any estimate 6 ~ bg of the human’s preferences, the
robot can solve for the corresponding trajectory that maximizes R:

&p = arg r?ggR(é*, 0). (4)

Here, &y is an optimal trajectory given preferences 6. Imagine that the robot has currently
learned b;e' If we were to deploy this robot now, and the robot solves for the optimal trajectory

IFor robot arms, we start with a trajectory & and then add varying levels of zero-mean Gaussian noise to the waypoints.
This produces trajectories &, which we randomly combine to form questions Q € Q.
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given what it has learned, the expected features of this trajectory are:

1 = Bgp [ £(E0)]- 5)
Similarly, the variance of these features across multiple runs is:
of = Varg_y; [ f(£0)]. ©)

Viewed together, Equations (5) and (6) determine (i) what the robot would do if deployed and
(i) what features of the task the robot is and is not confident about. We combine both the mean y;
and standard deviation o; to form the vector z*:

z* = (i, 07) € R¥. (7)

Under this representation, z* € Z is a compact embedding of the features induced by the robot’s
current belief b%. Our choice of Z contains both the behavior the robot has learned to perform as
well as the parts of this behavior the robot is confused about.

To better understand z*, we return to our motivating example in Figure 1. Here, the task features
are stacking distance and height. If the robot is completely confident it should minimize stacking
distance, but is unsure about the right height, the components of z* could be:

u; = (0 stacking distance, 0.5 height), o¢; = (0 stacking distance, 0.3 height). (8)

Communicating z* back to the human has two parts: what the robot has learned (i.e., y;) and
how confident the robot is in that learning (i.e., o;). An intelligent robot should choose questions
to make z* transparent and bring the human into the learning loop.

4 MODELING HOW HUMANS INTERPRET QUESTIONS

Our work is based on the hypothesis that humans gather information about the robot by observ-
ing the questions the robot asks. In this section, we formalize our hypothesis by introducing a
human model that robots can leverage to solve Equation (3). Intuitively, this model defines how
humans interpret robot questions; more specifically, this model relates the questions the robot asks
to the information those questions reveal. A robot that optimizes for this model chooses revealing
questions that proactively communicate what it has learned.

Bounded Memory. Within Equations (2) and (3), the human is learning in response to the robot’s
learning. This is an instance of co-adaptation. Prior research from economics [27], game theory [37],
and human-robot collaboration [34] suggests that co-adaptive humans base their decisions on the
recent actions of their partner. Applying this bounded memory model to our setting, we assume
that the human focuses on the robot’s last k questions. We also assume that—from the human’s
perspective—the robot’s learned behavior z is constant during these k questions. Applying both
assumptions, Equation (3) now reduces to*:

by (2) = P(z | Qickss - - Qi)- ©)
Employing Bayes’ Theorem and conditional independence:
bz e Pi) [ P(Q: 12 (10)
r=i—k+1
Equation (10) captures what the human thinks the robot has learned based on the robot’s k most
recent questions. Here, P(z) is the human’s prior over what the robot knows, and P(Q | z) is the

2Notice that Equation (9) no longer depends on answers g. This is a result of the human’s assumption that z is locally
constant, meaning that the human’s last answer (or answers) did not affect the robot’s learning.
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likelihood that the robot asks question Q given that it has learned z. The last step in our human
model is formulating this likelihood function P(Q | z).

Question Likelihood. To motivate our choice of likelihood function, we return to our running
example where the robot is learning about height and stacking distance. Imagine that the robot
shows you a question with two trajectories: One trajectory moves close to the table and stacks the
dishes, while the other trajectory moves high above the table and places the dishes in different
locations. Because both height and stacking distance vary in this question, you may infer that the
robot is uncertain about both features of the task. By contrast, if the robot shows you a question
where both of the trajectories stack the dishes, you will likely assume that the robot knows stacking
distance. Driven by this intuition, we propose to model P(Q | z) by comparing the actual behavior
shown in question Q to the learned behavior captured by z:

P(Q | 2) « exp{~Il(tg, a0) - 2II*}. (11)

Here, d is the number of features, (110, 0p) € R? is a vector formed by concatenating po and o,
and z € R? is our parameterization from Equation (7). Recall that each question Q is composed of a

set of trajectories Q = {&y, ..., &y} In Equation (11), yp is the mean features across the trajectories
shown in question Q, and oy is the standard deviation of these features:
no =Ereo[f(®)]. 0 = Vargeo[£(0)]. (12)

In practice, Equation (11) states that humans expect the robot to ask questions that match the be-
havior the robot has learned. Consider our motivating example where the robot’s learned behavior
is summarized in Equation (8). Under our model, the human thinks it likely that this robot will ask
questions where each trajectory minimizes stacking distance and demonstrates a different height,
but unlikely that the robot will ask questions that vary the stacking distance.

Revealing Questions. What if the robot wants to ask questions that purposely convey its learned
behavior to the human? Put another way, what if the robot wants to be as interpretable as possible?
Recall that the robot’s current belief b;z is compactly represented by z*. We leverage our model
from Equations (10)—(12) to proactively reveal z* to the human:

O veal = ATE rQn?g b,’;l(z*). (13)

Here, Q is the set of feasible questions,and Q7 . € Q is the question that greedily maximizes
the human’s belief in z*. We emphasize that—because the robot in Equation (13) is optimizing for
transparency—the human’s answer to Q,¢eq; may not be particularly informative for the robot.
Instead, this robot is only considering the human’s perspective. From the human’s point of view,
Qreveal 1s interpretable because it demonstrates a set of trajectories, which accurately reflect what
the robot is confident about and what the robot is still trying to learn.

Summary. With Equations (10)-(12), we formalize our key insight: We introduce a cognitive
model that relates the questions that the robot asks to the information those questions reveal.
As shown in Equation (13), this model enables robots to proactively optimize for revealing ques-
tions. We note that we can leverage this approach when the robot only asks a single question, or
when the robot asks the human multiple multiple questions in sequence.

5 DO HUMANS LEARN FROM QUESTIONS?

We have proposed a model to formalize the relationship between robot questions and the informa-
tion they convey. Here, we conduct an online user study to test this model and explore whether
humans gather information from robot’s questions. Within this study a robot arm moves across
a table to learn three human preferences (see Figure 2): the height of the robot’s end-effector, the
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Fig. 2. Questions reveal information. (Left) An example question from our Amazon Mechanical Turk user
study. (Right) Participants responded to sequences of these robot questions by indicating what they thought
the robot had learned. High scores indicate the human believed the robot was confident about a preference,
while low scores indicate the human perceived the robot as unsure. In reality, we displayed (i) robots that
were only unsure about height and (ii) robots that were unsure about both height and ball. Across both
conditions users correctly inferred what the robot had learned based only on the questions the robot asked.
Differences in user score were statistically significant (p < .001). Error bars show SEM. For this and other
plots, we include additional statistical analysis in Appendix A.

distance between the robot and the ball, and whether or not the robot ends above the bowl. The
robot asks the human a sequence of questions to learn their preferences. We measure what these
questions reveal to the human. After viewing the questions, participants specify which preferences
they think the robot understands or is unsure about. The robot optimizes for questions that are as
revealing as possible: If humans follow our cognitive model, we anticipate that their understanding
of what the robot knows will match what the robot has actually learned.

Independent Variables. We varied the robot’s uncertainty across two scenarios. In the first sce-
nario, the robot was unsure about height but confident about ball and bowl. In the second scenario,
the robot was unsure about both height and ball while remaining confident about bowl. We never
informed our study participants which preferences the robot did and did not know.

Participants and Procedure. We conducted a within-subjects study on Amazon Mechanical Turk
and recruited 50 participants. All participants had at least a 99% approval rating. We first described
the high-level task, and explained the height, ball, and bowl preferences. We then asked comprehen-
sion questions to ensure that all participants had carefully read and understood our instructions.
The remainder of the survey was divided into six sections: each section included videos of three
robot questions (similar to the sample question from Figure 2). In half of the sections, the robot
was uncertain about one feature, and in half of the sections the robot was uncertain about two
features. We randomized the order of the sections.

The robot leveraged our cognitive model and Equation (13) to choose which questions to ask.
This revealing robot optimized for questions that communicate robot learning to the human—if
users were unable to interpret these questions, we doubted users would gather information from
other, more ambiguous questions.

Dependent Measures. After viewing each set of robot questions, participants indicated what
they thought the robot had learned on a 5-point scale. Here, a score of 1 denotes that the human
believed the robot was completely unsure about a given preference, while a score of 5 denotes that
the human thought the robot fully understood that preference. We aggregated all 50 user responses
to determine the mean score and standard error of the mean (SEM) for each preference.

HypoTtHEsts. When robots purposely ask revealing questions, humans will correctly infer what
parts of the task the robot is confident or unsure about.
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Fig. 3. Follow-up comparison between two types of revealing questions. In all-at-once, the robot asks ques-
tions that reveal what the robot knows about every preference, while in one-at-a-time, the robot asks
questions that reveal a single preference per question. The robot is actually uncertain about height and
ball preferences. We found that differences between the participants’ perception of all-at-once and one-at-
a-time were not statistically significant. Additional details can be found in Appendix A.2.

Results. Our results are visualized in Figure 2. When interpreting these results, remember that a
user score below 3 indicates participants thought the robot was unsure about a preference, while
a score above 3 indicates humans thought the robot was confident. Overall, we found that partici-
pants correctly inferred what the robot did and did not know based just on the questions the robot
asked.

—One uncertain preference. When the robot was only uncertain about height, post hoc compar-
isons revealed that users perceived the robot as more unsure of height than either ball or bowl
(p<.001). Participants scored the ball and bowl as 1.96 and 1.44 points more confident than height,
respectively.

—Two uncertain preferences. When the robot was unsure about both height and ball, post hoc
comparisons demonstrated that participants thought the robot was more uncertain about height
and ball as compared to bowl (p <.001). Participants scored the bowl as 1.35 points more confident
than height and 1.40 points more confident than ball.

Do Human’s Focus on Specific Parts of Questions? When conducting this study, we wondered
whether humans viewed robot questions holistically, or if they focused their attention on specific
aspects of the robot’s questions. Consider the example in Figure 2. Here, the robot’s question shows
two clearly different heights, but also two slightly different values for bowl: £, ends directly above
the bowl, while &, is a bit to the left of the bowl. When participants saw this question, did they
only learn about height, or did they also think about bowl?

Similar to prior work [5], we therefore performed a follow-up user study with all-at-once and
one-at-a-time questions. We conducted this survey within the scenario where the robot was un-
sure about two preferences: height and ball. The all-at-once robot asked questions that conveyed
what it had learned about every preference simultaneously (e.g., a question that varied both height
and ball). By contrast, the one-at-a-time robot only conveyed its understanding of a single prefer-
ence per question (e.g., the first question only varied height, and the second questions only varied
ball). We recruited 50 users on Amazon Mechanical Turk for this follow-up study.

Our results are shown in Figure 3. Interestingly, participants interpreted all-at-once questions
just as well as they interpreted one-at-a-time questions: The differences between these two
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conditions were not statistically significant (F(1,49) = 0.20, p = .66). This suggests that partic-
ipants in our survey did not hone in on specific parts of robot questions, and robots could leverage
a single question to convey multiple aspects of their learning. We recognize that a limitation of
this study was that there were only three total preferences to ask about: We anticipate that as the
number of preferences increases, the all-at-once approach may break down.

Summary. The key assumption underlining our work is that robot’s questions reveal information
to humans. We supported this hypothesis in an online user study: A total 50 participants correctly
identified what the robot did and did not know based only on the questions the robot asked. Within
this study, the robot purposely optimized for revealing questions using our cognitive human model
from Equation (13). The effectiveness of these questions suggests that our model produces ques-
tions that the human can correctly interpret.

6 COMBINING INFORMATIVE AND REVEALING QUESTIONS

In the previous section, we demonstrated that robot questions can convey information to human
onlookers. We generated these questions using Equation (13), which optimizes for revealing ques-
tions. On one hand, revealing questions communicate what the robot has learned to the human.
On the other hand, these questions may not be particularly informative for the robot.

To see why, we return to our motivating example in Figure 1. Here, the robot is unsure about how
high to carry the dishes, and so when it optimizes for a revealing question, it shows trajectories
that carry the dishes at fluctuating heights. Perhaps one trajectory initially moves the dishes close
to the table and then goes high, while the second trajectory initially moves high and then goes low.
This question conveys to the human that the robot is unsure about height (since each & € Q moves
at varying height), but the human’s answer to this question provides no new information to the
robot (because each & € Q has the same average height). From the robot’s perspective, we want
to ask a question that clearly elicits the human’s preference: e.g., one trajectory that carries the
dishes high above the table, and a second trajectory that always keeps the dishes near the table.

In this section, we formulate optimizing for revealing questions as one extreme of a spectrum.
At the other end of this spectrum are robots that optimize for informative questions. Informative
questions speed up robot learning but may mislead the human; revealing questions clarify what
the robot has learned but may not elicit new information. We describe how robots tradeoff along
this spectrum, intelligently balancing between giving and getting information.

Informative Questions. Optimizing for informative questions is well explored in prior work
[9, 23, 43]. Following [9, 10], informative questions greedily maximize the robot’s expected infor-
mation gain about 6%, the human’s true preferences:

Q.* = max I1(0%; Q,bi
info argQéiX: ( q | 'R) (14)

= max H(0" | Q,b%) —Eq-o|H(0" | q,Q,bk)|.
arg gx (0710, bg) q Q[ (0" 1 9,0, bg ]

Here, I denotes mutual information, H is the Shannon entropy, and I(6*;q | Q, b,’k) quantifies the
amount of information the robot will learn about 6* if it observes human answer g given question
Q and current estimate bj, [17]. The robot does not know the human’s answer g when choosing
which question to ask. Accordingly, in Equation (14), the robot chooses its question Q . € Q
such that—regardless of what answer the human provides—observing that answer will optimize
the expected amount of information the robot gains.

Trading-Off. A robot that optimizes Equation (14) focuses on purely gaining information from
the human. Conversely, a robot that optimizes Equation (13) is only focused on revealing infor-
mation to the human. In order to facilitate a bi-directional exchange of information, we here
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introduce a spectrum between these two extremes. Robots can now identify questions that are both
informative and revealing by optimizing:

Qipectrum = argmax 1(6°;q | Q. b) + A+ bji! (). (15)

In the above, A > 0 is a hyperparameter that determines the relative importance of gaining or
revealing information. When A = 0, the robot only considers information gain, and if 1 — oo, the
robot thinks only about revealing information.

When Should Robots Gather or Reveal Information? Robots that leverage our approach trade-
off along a spectrum between getting and giving information. We want to theoretically understand
when Equation (15) leads to more informative questions or more revealing questions. Below we
prove that robots, which leverage Equation (15) follow an underlying pattern: They ask their most
informative questions the first time they interact with the human, and converge toward purely
revealing questions over repeated interactions.

PrRopPOSITION 1. Assuming that the user has fixed preferences 0, and the user chooses answers that
are consistent with their preferences, robots that optimize Equation (15) for informative and revealing
questions converge toward asking revealing questions over time.

Proor. We assume that each time the robot asks a question the human chooses a trajectory
g € Q that maximizes their reward, so that ¢ € argmaxgyeq R(q’,0). Given this assump-
tion, the first term from Equation (15) is submodular and monotone [33]. It directly follows that
I(6%:q | O, bée) — 0 as the interaction number increases (i.e., i — o0). Intuitively, each successive
question and answer provides less new information about 6* since the robot has already formed an
increasingly accurate estimate from the previous human answers. At the limit 1(6*; q | Q. bj) — 0,
and the robot only optimizes for bzl (z"), i.e., revealing questions. ]

What Happens when Robots are Confident? As the robot continues to ask questions and re-
ceive answers it will converge to an estimate 6 of the human’s preferences so that bg(0) — 1.
But while the robot is confident in what it has learned, it still does not know if this 6 is correct:
perhaps the human incorrectly answered several questions, or perhaps the human’s preferences
have shifted during repeated interaction. Hence, it is important for the robot to leverage revealing
questions and communicate its learning. At an extreme where the robot no longer has any uncer-
tainty, the questions produced by Equation (15) will communicate what the robot has learned by
rolling out trajectories that exactly match the learned behavior. As we will see in our user studies,
these questions indicate to humans (i) what the robot has learned and (ii) when it is ready to be
deployed.

Implementation and Hyperparameter Tuning. When a robot leveraging Equation (15) first
interacts with the human it does not know what the human wants, and selects questions that
proactively learn 6*. Over time this robot gets a good grasp of the human’s preferences, so that
there is no longer any need to ask informative questions. At this point the robot continuously
transitions toward revealing questions that communicate z* back to the human.

There are two hyperparameters for designers to tune when implementing Equation (15). The
first is A, which arbitrates the relative importance of informative and revealing questions. The sec-
ond is k from Equation (10), which models how many recent questions the human remembers. We
will study the effects of both hyperparameters in the following sections. Based on these experi-
mental results, we recommend that designers start with A = 1 and k > 3. We find that optimizing
for informative and revealing questions is largely invariant to the choice of k, while A enables the
designer to adjust how informative or revealing the robot is.
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7 SIMULATIONS

We have formulated informative and revealing questions along a continuous spectrum, and pro-
posed that robots should tradeoff between these extremes. However, it is not yet clear whether
robots that optimize for both informative and revealing questions will do a good job of either
one. Put another way, when the robot optimizes for Equation (15), are its questions rich enough
to gain information while remaining transparent to the human onlooker? Here, we test our pro-
posed approach in two environments with simulated users, and compare informative and revealing
questions to the performance of state-of-the-art active learning baselines. We then conduct two
separate simulations where we vary the hyperparameters in our approach: We experimentally find
that humans do not need to remember every robot question in order to correctly interpret the ro-
bot’s learning. We emphasize that these results are obtained from simulated humans, where we
carefully control the human’s response and simulate the human’s behavior by applying existing
cognitive human models. We will support our experimental findings from these simulated humans
in Section 8, where we perform similar tests with actual human operators.

Baselines. We compare the performance of informative and revealing questions (Ours) to three
different baselines. The first is a naive robot that chooses questions uniformly at Random. The
other two baselines are the extremes of our spectrum: one robot optimizes solely for Informa-
tive questions using Equation (14), and another robot optimizes for Revealing questions using
Equation (13). We note that the revealing robot matches what we used in our online user study
from Section 5, and the informative robot is taken from recent work on active preference learn-
ing [9, 10]. Hence, Informative is a state-of-the-art approach for active preference-based reward
learning.

Simulated Users. For each robot question, we simulate the human’s response. There are two
components of this response: (i) what the human infers from the robot’s question and (ii) how
the human answers this question. To simulate what the human infers from the robot’s question,
we leverage the cognitive human model we developed in Section 4 and experimentally tested in
Section 5. To simulate how the human answers the question, we apply the same approach as related
work on active learning [7, 9, 21, 23, 43]. Here, the human is modeled as an approximately optimal
decision maker. In each question, the robot shows two different trajectories, Q = {&, &}, and the
human has three possible answers: trajectory &, &, or “I don’t know” (Idk) [21]. The human
noisily chooses the trajectory ¢ that best agrees with their preferences, and in cases where the two
trajectories produce about equal rewards, the human is more likely to select Idk:

exp(R(&i, 0))
exp(R(&, 0)) + exp(1 + R(£-1,0))

P(g=1¢&i10.0) =

P(g=1dk | Q.0) =P(g=£&1Q.0)-P(g=£&1Q.0) - (exp(2) - 1).

In the above, we use —i to denote the other trajectory, so that if i = 1 then —i = 2 (and vice
versa). Our choice of human model is consistent with prior work on inverse reinforcement learning
[25, 36, 53] and cognitive psychology [27, 28, 32].

Environments. We implement the simulated users alongside a robot arm and autonomous car
[16]. The robot arm environment matches our previous user study (see Figure 2), where the hu-
man’s unknown preferences are the robot’s height, the distance to the ball, and if the robot ends
above the bowl. In the driving environment, the human’s preferences include the car’s speed, the
car’s distance from obstacles, and the car’s distance from the center of the lane. Across both envi-
ronments, we simulate 100 users with uniformly randomly chosen preferences 6.
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Fig. 4. Simulated humans answering 20 robot questions. Human Error refers to the difference between what
the robot actually learned and what the human thinks the robot learned (i.e., the human’s perspective). By
contrast, Robot Regret captures the error between the robot’s learned behavior and the human’s desired be-
havior (i.e., the robot’s perspective). When we consider both the robot and human perspectives, we generate
questions that convey learning while gathering information (Ours). Question Difficulty denotes the fraction
of questions in which the simulated human did not know how to answer and selectedldk. Humans find ques-
tions generated by our approach less challenging to answer than informative questions. Note that lower is
better in all plots. Shaded regions show standard deviation across 100 simulated humans. Statistical analysis
of the results after all 20 questions were asked is located in Appendix A.3.

7.1 Comparison to State-of-the-Art Baselines

Our first set of simulations compares informative and revealing questions to naive and state-of-
the-art baselines. The results from these simulations are visualized in Figure 4. Note that these
results are based on simulated humans that follow state-of-the-art cognitive models: to support
these results, in Section 8, we will test our proposed approach across two in-person user studies.

Are Questions Revealing? We first consider the human’s perspective, and determine which types
of questions communicate the robot’s learning back to the human. We measure Human Error,
which captures the difference between what the robot really knows (i.e., z*) and what the human
thinks the robot knows (i.e., bgs). This is a proxy measure of interpretability: ideally, the human
will understand exactly what their robot has learned so that they can correctly anticipate what
their robot will do when it is deployed. Looking at Figure 4, we see that both Ours and Revealing
are transparent to the simulated humans. By contrast, simulated users who interact with either
Random or Informative are unsure about what the robot partner learned. Indeed, Informative
questions tell the simulated human just as much about what the robot is learning as completely
Random questions do.

Are Questions Informative? We next consider the robot’s perspective, and determine which
types of questions provide the most information about the human’s latent preferences. We assess
how quickly the robot learns by measuring Robot Regret [36]. Recall from Equation (4) that &
is the optimal trajectory given that the human’s preferences are 6. Regret is the difference in re-
ward between the human’s preferred behavior and the robot’s learned behavior: Eg4, [R(£p+, 0") —
R(&p, 07)]. Regret will decrease over time because the robot is collecting more human answers and
honing in on the human’s preferred behavior 8. But we can accelerate this process by proactively
asking insightful questions—referring to Figure 4, both Our robot and the Informative robot
quickly learned the human’s desired behavior. By contrast, a robot that asks Revealing questions
learned at about the same rate as a robot that was asking questions completely at Random.
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Fig. 5. Simulated humans interacting with our proposed approach. We tune two key hyperparameters and
see how they affect the human’s understanding of the robot (Human Error) and the robot’s estimate of the
human’s preferences (Robot Regret). The dashed lines show the lower and upper bounds for revealing or
informative baselines. (Top) We leave k = 3 while varying the relative importance of gaining and revealing
information. At high values of A, the robot favors questions that reveal information, and at low values of A,
the robot focuses on gaining information. Even at the extremes (1 = 0.5, 4 = 1,000), our combined approach
performs better than just asking informative or revealing questions. (Bottom) We leave A = 1 and vary
how many recent questions the simulated human reasons over. The more questions the human remembers
the more information the robot can reveal; however, our approach still reaches the lower bound even if the
human can only remember the last three questions. Standard deviation omitted from the top right for clarity.
Additional statistical details after all 20 questions were asked is located in Appendix A.4.

Are Questions Confusing? Beyond both gaining and revealing information, we want to ensure
that the robot’s questions are easy for the human to answer. Prior work suggests that easy, user-
friendly questions improve the human’s experience and reduce the number of wrong answers,
which, in turn, speeds up the robot’s learning [9, 10, 13, 39]. We therefore assess question difficulty,
which measures the fraction of time that the simulated humans answered Idk. When users pick
Idk, the options are too hard to distinguish and the question is challenging for the human to clearly
answer. In general, we find that Random and Revealing questions are quite easy for the simulated
human to answer, while Informative and Ours get harder over time. Ours is slightly easier than
the Informative baseline.

7.2 Effect of Hyperparameters on Our Approach

In the previous simulations, we choose A = 1 and k = 3 for the hyperparameters of Ours and left
these hyperparameters fixed across both environments. Now in our second set of simulations, we
will explore how tuning these two hyperparameters affects our approach to generating informative
and revealing questions. The results from these simulations are visualized in Figure 5.

How Should Designers Arbitrate? In Equation (15), we introduce A, which arbitrates the rela-
tive importance of gaining or revealing information. Higher values of A put more weight on reveal-
ing information, while lower put more weight on gaining information. In Figure 5, we return to
the simulated robot arm environment, and test Our approach with A = {0.5, 1, 10, 100, 1000}. We
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compare these results to the lower and upper bounds for Informative and Revealing robots. We
find that A effectively enables designers to tune between these extremes: at low values of 1 we
approach the lower bound for robot regret, and at high values of A we approach the lower bound
for human error. Importantly, even at A = 0.5, the robot is still asking questions that are more
revealing than an Informative robot. This suggests that—even when designers are focused on
quickly learning human preferences— Ours can still noticeably improve human understanding.

How Many Questions Does the Human Need to Remember? In our cognitive human model
from Equation (10), we assume that the human remembers and reasons over the robot’s last k
questions. In our first set of simulations, the human only remembered k = 3 recent questions:
can the robot still convey its learning if the human only thinks about the robot’s last question,
and how much does this communication improve if the human remembers every question? In
Figure 5, we compare Our approach with k = {1, 3, 4, 10, 20}, where k = 1 means that the human
only remembers the last question, and k = 20 indicates that the human remembers every question.
As expected, the human’s bounded memory has no impact on the robot’s regret, since k does
not change how the human answers the robot’s questions. But k does affect how accurately the
human interprets the robot’s learning. Specifically, we find that a single question is not enough:
with k = 1 the human’s error remains constant after each iteration, while with k > 3, the human’s
error converges to the best case performance of a purely Informative robot. We conclude that our
approach requires that users keep multiple questions in mind, but they do not need to remember
all of the questions—here, it was sufficient to keep track of the last three.

Summary. Overall, we find that optimizing for informative and revealing questions captures the
best aspects of both perspectives. When using our approach the robot learns at the same rate as
the informative baseline while communicating just as well as a revealing robot (Figure 4). The
questions we generate are still easy for the human to answer: simulated users choose Idk less
frequently with our method than they do with an existing approach for asking easy questions [10].
Finally, our approach is robust to different choices of the bounded memory model: The human can
infer what the robot is learning even if they cannot remember every robot question (Figure 5).

8 USER STUDIES

We conducted two in-person user studies to compare our approach to a state-of-the-art active
learning baseline.® Users interacted with a robot optimizing purely for informative questions, as
well as a robot optimizing for both informative and revealing questions. In the first user study, we
explored how the robot learned the participants’ preferences and the types of questions the robot
asked. Next, in our follow-up user study, we evaluated how the robot’s questions affected the par-
ticipants’ perception of (i) what the robot learned and (ii) whether it was ready to be deployed. Both
studies shared a common experimental setup where participants taught a 7-DoF robot arm (Fetch,
Fetch Robotics) by answering the robot’s questions across three tasks. Videos of our experimental
setup and results are available here: https://youtu.be/tC6y_jHN7Vw.

Independent Variables. We tested two different algorithms for generating questions: Informa-
tive and Ours. In Informative, the robot leveraged a state-of-the-art active learning approach
that optimizes for information gain [9, 10, 43]. This robot only seeks to gather information, and
does not consider how its own behavior could influence the human. We experimentally compared
this state-of-the-art approach to a robot asking informative and revealing questions (Ours). Here,
the robot applied Equation (15) to tradeoff between both human and robot perspectives.

3The code is available at https://github.com/VT-Collab/revealing-questions.git.
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8.1 Learning the Human’s Preferences

Our online survey from Section 5 demonstrated that humans can infer what the robot is learning
based on the questions the robot asks. Our first in-person user study goes one step farther: We
test whether robots can actively elicit information from the human while also revealing what they
have learned. Participants taught the robot their preferences by answering pairwise comparisons.
We measured how efficiently the robot learned the human’s preference, and also compared the
types of questions the robot asked.

Participants and Procedure. We recruited 10 community members (3 female, 1 non-binary, ages
23 + 5.2 years) to participate in our study. All participants provided informed written consent
consistent with Virginia Tech IRB #20-755. Participants taught a robot the three tasks shown in
Figure 6: stacking dishes (Stack), marking a target (Mark), and sorting objects (Sort). In each task,
the robot was initially unsure about the human’s true preference 0*. Stack is the task from our
motivating example (also see Figure 1) where the robot must learn where to place the dishes and
how high to carry them. In Mark, the robot did not know how and where to mark each target on
the table, and in Sort the robot was unsure about which object should be placed on which shelf. We
leveraged a counterbalanced, within-subjects design: participants completed each task twice, once
with Informative and once with Ours. Half of the participants started with the Informative
robot. Participants were never told which condition they were interacting with.

During a given interaction the robot asked a total of eight questions, where each question
consisted of two possible trajectories (£ and &;). We generated questions by adding zero-mean
Gaussian noise to an initial trajectory and then randomly pairing the results: with this approach,
the robot had between 100 and 200 possible questions to choose from. When asking a question,
the robot first demonstrated &, reset to the start position, and then demonstrated &. We used
pauses between each trajectory to better distinguish each phase of the interaction. Similar to our
simulation setup from Section 7, participants responded to the robot’s question by indicating that
they preferred &, &, or by saying Idk. At the end of these eight questions, the robot played back
the optimal trajectory it had learned from the human’s answers.

Dependent Measures—Subjective. After participants answered all the robot’s questions with a
given condition, we administered a 7-point Likert scale survey [45]. Our survey questions were
arranged into the five multi-item scales described in Table 2. We first asked participants how Easy it
was to answer the robot’s questions, whether the robot learned over time (Improve), to what extent
the robot questions Revealed information, and whether it was clear what the robot was unsure
about (Focus). After the participants answered these initial survey questions, we then played back
the optimal trajectory that the robot had learned. Participants watched the trajectory, and assessed
whether this Learned Behavior matched what they originally wanted the robot to do. Because
each human participant had their own internal preferences, we did not have access to the ground
truth 6*. We therefore used Learned Behavior as a measure to see whether what the robot learned
matched the human’s latent preferences.

Dependent Measures—Objective. To get a sense of what types of questions the robot chose, we
measured Convergence. Let £* be the trajectory that optimizes the reward function learned from
the human’s answers, and recall that Q = {&, &}. Convergence captures the feature difference
between the robot’s current question and the learned trajectory: || f (&) — f(ED I+ f () — F (&)
In practice, the lower the convergence value gets, the more similar the robot’s questions are to
the robot’s learned behavior (i.e., & and & match £*). Measuring convergence tells us whether the
robot is asking questions to gather new information (higher convergence values) or to reveal what
it has learned (lower convergence values).
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Fig. 6. Experimental setup for our user study in Section 8.1. (Top) The robot asked questions to learn the
human’s preferences 0" across three different tasks. We plot sample question trajectories generated by Ours.
(Bottom) When the robot considers how the human interprets its questions, the robot purposely chooses
queries that reveal its current understanding z*. Here, Convergence captures the difference between what
the robot learned and the questions the robot asked. With our approach convergence decreases over time,
indicating that the robot is asking revealing questions that reflect what it has learned.

HypoTHESEs. We had two hypotheses in this user study:

H1. Robots that tradeoff between informative and revealing questions will learn at a
similar rate to informative robots while updating the human about the robot’s learning.
H2. Taking the human’s perspective into account will cause the robot to ask questions
that converge toward its learned behavior.

Results—Subjective. Table 2 and Figure 7 display the results of our Likert scale survey. We first
tested the reliability of our five scales, and found that the easy, reveal, focus, and learned behavior
scales were reliable (Cronbach’s @ > 0.7). Accordingly, we grouped each of these scales into a com-
bined score, and performed a one-way repeated measures ANOVA on the results. The answers to
the improve questions were inconsistent, perhaps because different users interpreted these survey
questions in different ways. We have included improve in our plot of the results, but because of its
unreliability we did not conduct additional statistical analysis on this scale.

Overall, the results from our Likert scale survey support H1. Participants perceived the final
behavior learned by Ours as comparable to the behavior learned by the Informative baseline.
Both approaches successfully learned the human’s preferences across all three tasks (H1, 78) =
1.44, p = .233). However, the questions asked by Ours had a significant effect on participants’
attitudes toward teaching the robot. Specifically, users thought the questions asked by Ours were
easier to answer (F(1, 78) = 11.12, p < .01), more revealing about the robot’s learning (F(1, 78) =
27.81, p < .01), and better focused on uncertain aspects of the task (F(1,78) = 10.55, p < .01). We
conclude that Ours not only learned as efficiently as the state-of-the-art Informative robot, but
our approach also revealed this learning back to the human user.

Results—Objective. Convergence (see Figure 6) highlights one key difference between the ques-
tions generated by Ours and Informative. With Informative, the robot selects queries that are
often far from what the robot has learned, potentially misleading the human into thinking the

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 40. Publication date: September 2022.



Here’s What I’ve Learned: Asking Questions that Reveal Reward Learning 40:19

Table 2. Questions on Our Likert Scale Survey

Questionnaire Item Reliability F(1,78) p-value
-1 found it easy to answer the robot’s questions. .
—The robot’s questions were hard to answer. -85 1.2 p<.01
—The robot learned from my answers and improved. 25 3 3
—The robot kept asking things I thought it already knew. ’
-By the end of the task the robot’s questions revealed

what the robot had learned. 78 27.81  p<.01°

—At the end of the task it was still unclear what the
robot had and had not learned.
—The robot focused on specific parts of the task when

asking questions. .93 10.55 p < .017
—The robot always seemed unsure about the entire task.

—The robot’s learned behavior matched my preferences.

—The robot did not learn my preferred trajectory. 92 l4a - p=.233

We grouped questions into five scales and tested their reliability using Cronbach’s a. We explored whether the
robot asked easy questions, improved over time, revealed information about its learning, focused on specific parts of
the task, and learned the correct behavior. Computed p-values indicate if Ours scored higher than Informative,
where * denotes statistical significance. We include additional information about the mean and standard deviation
for each scale in Appendix A.5.

Informative
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Fig. 7. Subjective results from our in-person user study. Higher ratings indicate agreement, and * denotes
statistical significance (p < .01). (Left) Participants found the questions asked by Ours to be easier to answer,
more revealing, and better focused on specific parts of the task. (Right) After asking questions and collect-
ing the user’s answers, the robot played back its learned behavior. Participants did not notice a significant
difference between what the robot learned with Ours and an Informative active learning approach.

robot is confused or unsure. By contrast, with Ours the robot asks questions that gradually hone-
in on what the robot has learned, demonstrating this learning to the human. We emphasize that
these experimental results are consistent with Proposition 1, since here the questions generated
by Ours become more revealing over time (i.e., convergence decreases, indicating more revealing
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questions). Across all three tasks our objective results support H2, and suggest that robots, which
account for the bi-directional transfer of information purposely reveal their learned behavior to
the human.

8.2 Follow-up: Bringing the Human into the Learning Process

The results of the first user study indicate that our approach improves the human’s perception of
the robot. But what are the practical benefits of keeping the human up-to-date with the robot’s
learning? In this second user study, we test two potential benefits: (i) determining which features
the robot is still unsure about, and (ii) determining when the robot learner is ready to be deployed.
Overall, the purpose of this second user study is to see whether bringing the human into the
learning loop can improve the interactive learning process.

Participants and Procedure. We recruited 10 new community members (6 female, ages 25 +
3.5 years) to participate in this follow-up study. As before, participants provided informed written
consent following Virginia Tech IRB #20-755. These participants completed the Sort and Stack
tasks from Figure 6 with some slight modifications (described below). For both tasks the robot was
initially unsure about the human’s true preferences 6*.

In the modified Sort task, the robot was trying to learn three preferences: which cup to pick
up, which shelf to sort this cup onto, and whether to place the cup in the front or back of the
shelf (distance). We artificially limited the preferences that the robot could learn from the human’s
answers: no matter what the human chose, the robot never learned which cup to pick up. After a
total of 12 robot questions we asked participants to specify which preferences they thought the
robot had learned and which preferences the robot was still unsure about.

By contrast, in the modified Stack task, we did not impose any limits on the robot’s learning.
Here, participants taught the robot until they thought it had learned their preferences and was
ready to be autonomously deployed. Each time the robot asked a question participants were given
the option to stop teaching and deploy the robot. We recorded the round where participants chose
to discontinue teaching (up to a maximum of twelve questions).

Participants completed the modified tasks once with the Informative robot and once with Our
approach. As before, we counterbalanced the order of presentation for this within-subjects design.

Dependent Measures—Revealing Learning. Our analysis for the Sort task was similar to the
online user studies from Section 5. After answering all 12 questions, participants indicated what
they thought the robot had learned about each preference on a 7-point scale. Here, a score of 1
denotes that the human believed the robot never learned that preference, while a score of 7 denotes
that the human thought the robot fully understood what they wanted. We also asked participants
whether the robot’s queries were Interpretable throughout the entire interaction.

Dependent Measures—Ready to Deploy. During the Stack task, we recorded how many ques-
tions the human answered before deciding that their robot was ready to be deployed (Deploy).
Of course, the human might think the robot learned their preferences before it actually did—
accordingly, we also recorded the first question where the robot’s regret was below a thresh-
old. Recall from Section 7 that regret is the difference in reward between the human’s preferred
behavior and the robot’s learned behavior. By recording regret, we thus identified a lower bound
on when the robot was actually ready to be deployed.
HypoTHESEs. We had the following two hypotheses:

H3. Humans will be misled by robots that only optimize for informative questions, but
will recognize what the robot has and has not learned under our approach.
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Fig.8. User perceptions of what the robot did and did not learn during the modified Sort task. In this task, the
robot was only able to learn shelf and distance preferences, and we artificially prevented the robot from learn-
ing which cup to sort. (Left) High scores indicate the human thought the robot learned a preference, while low
scores indicate the human thought the robot was confused. With the state-of-the-art Informative baseline,
participants were on the fence for every preference, even preferences the robot actually learned. (Right) We
also asked participants whether the overall behavior of each robot was interpretable. Higher ratings indicate
agreement, and * denotes statistical significance (p < .001). Additional details are in Appendix A.6.

H4. Our approach will cause participants to deploy the robot soon after it has learned
their preferences without answering additional and unnecessary questions.

Results—Revealing Learning. Our results on the modified Sort task are shown in Figure 8. Recall
that here we artificially prevented the robot from learning the cup feature. When participants
interacted with the Informative robot they did not realise this. Indeed, in the Informative
condition participants were misled about every preference, and were unsure if the robot even
understood their preferred shelf or distance. But with Our approach participants got it right:
They correctly recognizes what the robot did not learn (cup) and what the robot was confident
about (shelf and distance). The difference between these interpretations was significant across
three features (p < .001). Overall, participants perceived the questions asked by Our robot as
more interpretable than the questions asked by the state-of-the-art Informative robot (p < .001).

Results—Ready to Deploy. Our results on the modified Stack task are visualized in Figure 9. Here,
we recorded how many questions each user thought they needed to teach the robot their desired
behavior. The dashed line shows when the robot was actually ready to be deployed: The robot typi-
cally understood how to carry and stack the dishes after between two and four questions. However,
the robot’s learning was not transparent in the Informative condition. Here, participants were
never confident that the robot understood their preference, and so they answered all 12 questions
without choosing to deploy the robot. By contrast, the questions that Our robot asked helped par-
ticipants recognize that it was ready to be deployed. Participants consistently deployed Our robot
after it had successfully learned their preferences. These results support H4 and indicate that—by
actively bringing the human into the learning loop—robots using our approach encourage humans
to trust and deploy learning agents.
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Based on the robot's Informative
questions so far, I am

ready to deploy the robot.

O

Informative + Revealing (Ours)
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Fig. 9. Participants determining when the robot learner is ready for autonomous deployment. (Left) Par-
ticipants could choose to deploy the robot after any question, up to a maximum of 12 questions. (Right)
We measured the robot’s regret to determine when it was actually ready to be deployed. The dashed line
shows when this regret was less than a threshold of 0.2, indicating that the robot understood the human’s
preferences. ldeally participants will choose to deploy the robot immediately after this dashed line. With In-
formative participants were never confident in the robot and did not choose to deploy it (answering many
unnecessary questions). By contrast, the questions asked by Ours revealed that the robot had learned the
human’s desired behavior, and so participants chose to deploy this robot after around six questions. User 1
changed their preferences multiple times, making it unclear when this robot was ready to be deployed.

9 CONCLUSION

We explored settings where a robot is asking questions to learn the human’s reward function. Our
key insight was that robot questions implicitly convey information to the human, revealing what
the robot does and does not know. Prior work on active robot learning studies a one-way transfer
of information: from the human to the robot. In this article, we considered both human and robot
perspectives, and developed a method for asking questions that closes the loop and conveys what
the robot has learned back to the human teacher.

We first formalized the bi-directional transfer of information that occurs when robots ask ques-
tions. Here, we introduced a cognitive human model that relates the questions the robot asks to the
information those questions reveal. We tested this revealing model in online user studies, where
50 participants were able to correctly identify what the robot did and did not know based only on
the questions the robot asked.

Next, we formulated a continuous tradeoff between informative and revealing questions. We
found that when robots only optimize for gathering information users perceive their questions as
random and misleading. Conversely, when robots only optimize for revealing information, they
learn just as slowly as a robot asking random questions. Under our proposed approach, robots op-
timize for both human and robot perspectives: These robots actively select questions to efficiently
learn in an interpretable manner.

We conducted simulations and user studies to compare our approach to a state-of-the-art alter-
native. Robots leveraging our algorithm learned as quickly as robots that optimize for information
gain, but with the added benefit of revealing that learning to the human. In practice, this enabled
participants to (i) identify which parts of the task the robot was still unsure about, and (ii) deter-
mine when their robot had learned their preferences and was ready to be deployed.

10 LIMITATIONS AND FUTURE WORK

Our work is a step toward interpretable and transparent active learning robots. However, we rec-
ognize that there are many modalities that robots can leverage to communicate their learning to
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the human: e.g., natural language, haptic interfaces, or augmented reality. In this article, we specif-
ically focused on using robot motion, but future work should consider multiple, complementary
types of feedback. Depending on the situation one or more of these modalities may be preferable.
During our user studies participants commented that they were unsure about which part of the
robot’s question to focus on. Returning to our motivating example, imagine that the robot is un-
certain about both carrying height and stacking the dishes. The robot shows two trajectories: one
gets the height wrong but correctly stacks the dishes, and the other gets the height right but fails
to stack correctly. Which option should the user choose? We expected users to select the prefer-
ence that was more important to them (either height or stacking), but some participants voiced
confusion in these scenarios. This indicated to us that the robot should focus on one preference
at a time—however, in our follow-up online survey, 50 participants perceived the all-at-one and
one-at-a-time robots as similarly revealing. Moving forward, our working hypothesis is that robot
questions can vary multiple parts of the task when revealing information, but should focus on a
single preference when gathering information. We plan to explore this point in future work.

APPENDIX
A  STATISTICAL ANALYSIS

Within this appendix, we provide additional details for the statistical analysis of our simulations
and experiments. Each subsection corresponds to a figure in the main text.

A.1 Questions Reveal Information to Humans (Figure 2)

Participants of our Amazon Mechanical Turk user study correctly inferred the robot’s learned
behavior from robot questions. We conducted two separate repeated measures ANOVAs with a
Sphericity Assumed correction and found that user scores differed significantly between the three
preferences in the task (one uncertain preference: F(2,98) = 97.93, p < .001" and two uncertain
preferences: F(2,98) = 32.64, p < .001*). We then conduced the post hoc analysis shown in Table 3.

Table 3. Post Hoc Analysis of the Results in Figure 2 with a Bonferroni Adjustment

Condition Preference Mean Std. Dev. Compared To p-value
One uncertain oreference Ball 467 078 Height  p < .001*
P Bowl 415  0.86 Height  p < .001"
Two uncertain preferences Height 2.22 0.86 Bowl p <0017
P Ball 217 0.74 Bowl p <.001"

In one uncertain preference, the robot did not know the correct Height, and in two uncertain preferences the
robot was unsure about both the Height and Ball preferences.

A.2 Follow-up Comparison between Two Types of Revealing Questions (Figure 3)

We next tested two different ways of asking questions: asking questions that reveal the robot’s
uncertainty about every preference, and asking questions that focus on revealing the uncertainty of
one preference at a time. Participants of our Amazon Mechanical Turk user study did not perceive
a significant difference between these two methods. We conducted a two-way repeated measures
ANOVA across question methods and task preferences, and determined that the question method
did not have a statistically significant effect on the user’s scores. See Table 4.

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 40. Publication date: September 2022.



40:24 S. Habibian et al.

Table 4. Testing for the Main Effect of all-at-once vs. one-at-a-time Questions

Type Preference Mean Std. Dev. F(1,49) p-value
Height 248 131

All-at-once Ball 2.18 1.10
Bowl 3.38 1.34 0.20 b= .66
Height 222 115

One-at-a-time Ball 2.34 1.14
Bowl 3.66 1.17

We found that the question type did not have a statistically significant effect on the user
scores.

Table 5. Post Hoc Analysis of the Results of the Robot Environment in Figure 4 with
a Bonferroni Adjustment

Measure Method Mean Std. Dev. Compared To p-value
Random 0.69 0.18 Informative  p =.195
Revealing  0.37 0.14 Informative  p < .001*
Human Error Ours 0.39 0.13 Informative  p < .001
Random 0.69 0.18 Ours p < .001"
Informative 0.73 0.18 Ours p < .001"
Revealing  0.37 0.14 Ours p=.328
Random 0.02 0.03 Informative  p < .001*
Revealing  0.02 0.05 Informative  p < .001"
Robot Regret Ours <0.01 <0.01 Informative  p = .500
Random 0.02 0.03 Ours p < .001"
Informative < 0.01 < 0.01 Ours p =.500
Revealing  0.02 0.05 Ours p < .0017
Random 0.09 0.29 Informative  p < .001"
Revealing  0.18 0.39 Informative  p = .051
Question Difficulty Ours 0.33 0.47 Informative  p = .642
Random 0.09 0.29 Ours p < .0017
Informative  0.30 0.46 Ours p = .642
Revealing  0.18 0.39 Ours p < .05"

Remember that we are comparing the differences after all 20 questions have been asked. We focus on
the difference between our approach and the alternatives.

A.3 Comparison to State-of-the-Art Baselines with a Simulated Human (Figure 4)

We compared robot questions generated by our approach to state-of-the-art baselines. Here, 100
simulated humans answered a sequence of 20 robot questions. Below we compare the results after
all 20 questions were completed in the Robot Arm environment. For each of the metrics (Human
Error, Robot Regret, and Question Difficulty), we conducted a one-way repeated measures ANOVA
with a Sphericity Assumed correction to test for differences between the four methods for asking
questions. We found that there was a significant difference in Human Error (F(3,297) = 144.82,
p < .001%), Robot Regret (F(3,294) = 13.04, p < .001%), and Question Difficulty (F(3,294) = 7.05,
p < .001%). Next, we conducted the post hoc analysis shown in Table 5.
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Table 6. Post Hoc Analysis of the Results of Hyperparameter Tuning in Figure 5 with
a Bonferroni Adjustment

Measure Hyperparameter Mean Std. Dev. Compared To p-value
A=1 0.390 0.132 A=0.5 p=.058
Human Error A=10 0.328 0.134 A=0.5 p < .001"
A =100 0.345 0.135 A=0.5 p < .001"
A =1,000 0.346 0.120 A=0.5 p < .001"
A=1 0.001 0.003 A=0.5 p =.050
A=10 0.008 0.014 A=0.5 p < .001"
Robot Regret | 5 _ 5 0.020  0.035 A=05  p<.001*
A =1,000 0.019 0.028 A=0.5 p < .001"
k=3 0.358 0.135 k=1 p < .001"
Human Error k=5 0.288 0.096 k=1 p < .001"
k=10 0.258 0.063 k=1 p < .001"
k=20 0.300 0.059 k=1 p < .001"

Remember that we are comparing the differences after all 20 questions have been asked. We focus on
the differences between the lowest value of the hyperparameter and alternatives with increasing
values.

A.4 Effects of Hyperparameters on Our Approach (Figure 5)

We explored the hyperparameters A (the tradeoff between informative and revealing questions)
and k (the number of questions that the human remembers in our bounded memory model). As in
the previous analysis, here 100 simulated humans answered a sequence of 20 robot questions, and
we compared the results after all 20 questions were completed in the Robot Arm environment. A
one-way repeated measures ANOVA with a Sphericity Assumed correction determined that the
results differed significantly between A values (Human Error: F(4,396) = 9.21, p < .001* and Robot
Regret: F(4,392) = 19.25, p < .001%) and k values (Human Error: F(4,396) = 1.09, p < .001*). Note
that k had no impact on Robot Regret and therefore we did not further analyze these results. Finally,
we conducted the post hoc analysis shown in Table 6.

A.5 Subjective Results from our In-Person User Study (Figure 7)

Participants of our first in-person user study answered survey questions in five scales (Easy, Im-
prove, Reveal, Focus, and Learned Behavior). We performed a one-way ANOVA with a Sphericity
Assumed correction and found a statistical significance between user scores for Informative and
Ours across these scales. See Table 2 for our main results—in Table 7, we provide additional details
about the mean and standard deviation of each score.

A.6 Follow-up: Determining which Features the Robot is Unsure About (Figure 8)

In our second in-person user study, we tested whether participants could tell what parts of the task
the robot was unsure about. High scores indicate the human thought the robot learned a preference,
while low scores indicate the human thought the robot was confused. We first conducted a two-
way repeated measures ANOVA across question method (Informative or Ours) and preference
(Cup, Shelf; or Distance). We determined that the question method had a significant main effect on
user scores: F(1,19) = 5.03, p < .05". Accordingly, we conducted the post hoc analysis shown in
Table 8.
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Table 7. One-way Repeated Measures ANOVA on the Results of our Likert Scale
Survey in Figure 7

Questionnaire Item Method Mean Std. Dev. F(1,78) p-value
Easy g‘i‘;rsmaﬁve ;L:i(z) 027 1112 p<.01°
Improve I(;llt;irsmative iii 0.28 - -

Reveal gllflorzmaﬁve i;g 0.28  27.81 p<.01*
Focus gllfl‘;imative z;s 027 1055 p<.01*
Learned Behavior Informative 5.47 0.26 1.44 p=.23

Ours 5.92

Please refer to Table 2 for our main results. Note that we did not perform an ANOVA on the
Improve scale because the user’s answers were inconsistent (Cronbach’s a = 0.25).

Table 8. Independent-samples T-tests on the user Scores from Figure 8

Preference Method Mean Std.Dev. t(38) p-value
B Iy
Shelf ofonmative 450 1T 334 p< o5
Distance giirsmative éég (2);2 -4.94 p<.017
Interpretable I(;liiimative ;“;g (2)2;1 -4.87 p<.01"

We conducted this analysis after finding that question method had a significant main
effect on user scores.
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