IEEE TRANSACTIONS ON HAPTICS, VOL. 16, NO. 1, JANUARY-MARCH 2023

57

Wrapping Haptic Displays Around Robot Arms to
Communicate Learning

Antonio Alvarez Valdivia

Carly A. Mendenhall , Francesco Fuentes

, Graduate Student Member, IEEE, Soheil Habibian
, Ritish Shailly

, Graduate Student Member, IEEE,
, Graduate Student Member, IEEE, Dylan P. Losey *“,

and Laura H. Blumenschein

Abstract—Humans can leverage physical interaction to teach
robot arms. As the human kinesthetically guides the robot through
demonstrations, the robot learns the desired task. While prior
works focus on how the robot learns, it is equally important for the
human teacher to understand what their robot is learning. Visual
displays can communicate this information; however, we hypothe-
size that visual feedback alone misses out on the physical connec-
tion between the human and robot. In this paper we introduce a
novel class of soft haptic displays that wrap around the robot arm,
adding signals without affecting that interaction. We first design a
pneumatic actuation array that remains flexible in mounting. We
then develop single and multi-dimensional versions of this wrapped
haptic display, and explore human perception of the rendered
signals during psychophysic tests and robot learning. We ultimately
find that people accurately distinguish single-dimensional feedback
with a Weber fraction of 11.4%, and identify multi-dimensional
feedback with 94.5% accuracy. When physically teaching robot
arms, humans leverage the single- and multi-dimensional feedback
to provide better demonstrations than with visual feedback: our
wrapped haptic display decreases teaching time while increasing
demonstration quality. This improvement depends on the location
and distribution of the wrapped haptic display.

Index Terms—Haptic display, learning from demonstration,
tactile devices.

1. INTRODUCTION

MAGINE teaching a rigid robot arm to clean objects off a
I table (see Fig. 1). One intuitive way for you to teach this
robot is through physical interaction: you push, pull, and guide
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Fig. 1. Human physically teaching a robot arm. We wrap a soft pneumatic
display around the arm and render haptic signals by controlling the pressure
of the display. The robot learner leverages this haptic display in real-time to
communicate the parts of the task that it is confident about, as well as the parts
where it is uncertain and needs additional guidance.

the arm along each part of the task. Of course, the robot may
not learn everything from a single demonstration, and so you
show multiple examples of closing shelves, removing trash, and
sorting objects. As you kinesthetically teach the robot you are
faced with two questions: i) has the robot learned enough to clear
the table by itself and ii) if not, what features of the task is the
robot still uncertain about?

While existing work enables robots to learn from physical
human interaction [1], [2], [3], [4], having the robot effectively
provide real-time feedback to human teachers remains an open
problem. Ideally, this feedback should not be cumbersome or
distracting (i.e., the human must be able to focus on guiding
the robot) and should be easily interpretable (i.e., the human
must be able to clearly distinguish between signals). These
requirements present a tradeoff for haptic feedback as human
fingertips provide the densest mechanoreceptors, but placing
rigid devices at the hand will impact task performance. Recent
research has created communication channels by instead wrap-
ping haptic devices around the human’s arm [5], [6], [7], but
locating feedback at unrelated locations on the human’s body
can create a disconnect with the task.

Our insight is that — instead of asking the human teacher to
wear a feedback device or watch a computer monitor —

We can take advantage of the preexisting physical contact
between the human and robot through slim form-factor soft
haptic displays that wrap around the robot arm.
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Accordingly, in this paper we develop and analyze wrapped
haptic displays for communicating robot learning based on soft
robotic principles. We distribute these soft displays along rigid
robot arms so that the human can physically interact with the
robot to demonstrate a task while simultaneously perceiving
the robot’s feedback. We actively control the pressures of the
pneumatic display to render where in the task and what features
of the task the robot is uncertain about: the display inflates
for regions and features of the task where the robot is un-
sure about its actions (and needs additional human teaching),
and deflates where the robot is confident about the task (and
does not need any additional human guidance). Our hypothesis
is that — because the soft wrapped display creates a chan-
nel for communication on any surface without impacting the
task — humans will be able to more intuitively and robustly
use this feedback with a greater level of focus compared to
other feedback modalities. We experimentally demonstrate that
this pressure-based feedback enables humans i) to determine
whether the robot has learned enough to be deployed and ii)
to identify parts of the task where kinesthetic teaching is still
required. Additionally, we demonstrate the importance of the
location and distribution of the feedback on the robot arm for
creating this improvement. An interface that provides such intu-
itive and robust feedback about a robot’s latent state in real time
could potentially be introduced to factory settings that feature
learning systems. Such displays would allow everyday workers
with no programming or robot-related training to interact with
learning systems.

Parts of this work were previously published in [8], which pre-
sented the experimental results for our one degree-of-freedom
(DoF) haptic display. This current paper builds on that initial
research by demonstrating the design, analysis, and application
of multi-DoF spatial signals localized or distributed along the
robot arm, as well as a follow-up analysis of the 1-DoF device.
Overall, we make the following contributions:

Developing Wrapped Haptic Display: We design and build
a compliant pneumatic haptic device that wraps around and
conforms to the robot, providing haptic stimuli that are localized
to the robot arm and distributed along its geometry. This device
is manufactured using soft, flexible pouches that render haptic
signals through pressure.

Measuring User Ability to Perceive Wrapped Displays: We
perform a psychophysics study to find the range of pressures that
humans can distinguish. We report the just noticeable difference
(JND) for pressures rendered by the soft display.

Applying Wrapped Displays to Communicate Learning: We
ask participants to kinesthetically teach a robot arm while the
robot provides real-time feedback about its learning. We map
the robot’s uncertainty to the pressure of our wrapped display.
Compared to a graphical user interface, wrapped haptic display
feedback leads to faster and more informative human teaching,
and is subjectively preferred.

Extension on Wrapped Displays to Multiple Degrees of Free-
dom: We generalize the wrapped display design to create multi-
degree of freedom displays. These displays can be configured
to fit different robotic manipulator geometries and to change the
interconnections between pouches.

IEEE TRANSACTIONS ON HAPTICS, VOL. 16, NO. 1, JANUARY-MARCH 2023

Measuring Effect of Display Distribution on User Perception:
We perform a psychophysics study to understand how the spatial
distribution of the wrapped haptic display signals affects the
accuracy and speed of signal identification. We demonstrate a
tradeoff between speed of identification and accuracy as signals
are spread further apart.

Measuring Effect of Display Distribution of Multi-Degree of
Freedom Displays for Communicating Learning: We repeated
the kinesthetic teaching task with three degree of freedom
displays, confirming that users still improve demonstrations
over baseline as signal complexity increases. When comparing
different options to distribute feedback in 3-DoF displays, users
performed better with and subjectively preferred wrapped dis-
play layouts where all feedback was displayed the small area
where contact was already occurring instead of distributed in
larger areas along the robot arm.

II. RELATED WORK

In this paper we introduce a wrapped haptic display for com-
municating robot learning in real-time during physical human-
robot interaction. We build on previous research for kinesthetic
teaching, haptic interfaces, and soft displays.

Kinesthetic Teaching: Humans can show robot arms how to
perform new tasks by physically demonstrating those tasks on
the robot [1], [2], [3], [4]. As the human backdrives it, the robot
records the states that it visits and the human’s demonstrated
actions at those states. The robot then learns to imitate the
human’s actions and perform the task by itself [9]. One im-
portant output of the learning process is the robot’s uncertainty
about the task. The uncertainty can be measured as the robot’s
overall confidence in what to do at different states [10], [11],
or also measure the robot’s confidence on how to perform
the task [12], [13], [14], [15]. In this paper we explore how
robots should communicate their learning uncertainty back to
the human teacher. Keeping the human up-to-date with what
the robot has learned builds trust and improves teaching [16].
Outside of physical human-robot interaction, prior research has
developed multiple non-haptic modalities to communicate robot
learning and intent: these include robot motion [17], graphical
user interfaces [18], projections into the environment [19], and
augmented reality headsets [20]. Within a teleoperation domain,
our recent work suggests that haptic interfaces are particularly
effective at communicating low-dimensional representations of
robot learning [6]. Here we will leverage these results to de-
velop a real-time feedback interface specifically for kinesthetic
teaching.

Haptics for Information Transfer: When using haptics to com-
municating features of robot learning, the type of information
being transferred is important to consider. While haptic devices
have a general goal of stimulating the human sense of touch,
haptics has also been applied to communicate robot intent or
similar social features. For instance — when studying how
humans and robots should interact in shared spaces — prior
works have used haptics to explicitly convey the robot’s intended
motion or actions [5], [21], [22], [23]. Recent work has shown
that, given appropriate context, complex human-to-human social

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 29,2023 at 16:16:03 UTC from IEEE Xplore. Restrictions apply.



ALVAREZ VALDIVIA et al.: WRAPPING HAPTIC DISPLAYS AROUND ROBOT ARMS TO COMMUNICATE LEARNING 59

touch signals, like stroking [24], [25], hugging [26], danc-
ing [27], and emotional communication [28], [29], [30], can
be replicated and understood in a wearable format. Some other
work has shown the use of haptic interfaces for high information
tasks, like assisting navigation through rendering patterns with
a certain meaning [31] or using haptic signals to reduce the
distraction from visual displays in human-robot collaborative
task scheduling [32]. Lastly, work has shown communicating
alerts with different urgency levels in car driving [33], [34]
and communicating contact events in teleoperation and AR/VR
through hand-held haptic devices [35], [36]. These past works
suggest that a wide range of social and collaborative information
can be transferred using haptics with appropriate design of the
interface and signals.

Soft Haptic Devices: Soft haptic devices offer an attractive
option for human-robot communication due to their compliance
and adaptability, through the flexibility of the interface or the
compliance of the actuators. A range of compliant actuation
types have been use for haptic devices: pneumatic actuation [37],
[38], [39], shape memory alloys [25], dielectric elastomers [40],
and fluidic elastomers [41]. Soft wearable fingertip devices
have targeted a range of stimuli in the skin [42], such as
vibrations [43], [44], [45], indentation [46], [47], [48], skin-
stretch [49], [50], or combinations of those [51], [52], [53], [54].
Soft haptic approaches scale easily to increased areas of stimula-
tion; haptic surfaces using arrays of actuators and sensors show
scaling to fit varied areas. These developments have typically
used rigid elements, such as NFC electronics [55], thin-film
strain sensors [56], and piezo films [57], embedded in cloth
and silicone layers to create bi-directional interfaces. These rigid
elements can limit the flexibility of the device, and lead to issues
with wear over time and comfort. Some tabletop haptic displays
have used pneumatically actuated soft composite materials [58]
or pneumatic actuation with particle jamming [59] to control the
shape and mechanical properties of surfaces, leading to complex
signals and comfortable interaction.

Soft haptic interfaces also support a range of device types
distinguished by method of interaction: graspable, wearable,
or touchable [60]. This method can have a large impact on
the usability of the devices. Fingertip worn devices provide
high fidelity and interpretable signals [42], [45], [51]. These
devices are popular for virtual reality where physical contact
with the real world is unlikely; in other applications they can
reduce the user’s ability to use there hands. This motivates
wearable devices for other body areas, such as hand dorsal [61],
[62], wrists/forearms [25], [37], [38], or gloves that cover the
whole hand [63]. Our recent work has demonstrated the use
of inflatable pouches to create wearable haptic interfaces that
provide feedback to humans in the form of distributed spatial
inflation [39]. Placing haptic signals directly on the human body
enables the human to move about the space while receiving
real-time feedback; but, as feedback is moved away from the
fingertip and physically separated from the task, it potentially
requires additional mental energy to decode the intended mes-
sage. A different approach has focused on developing touchable
haptic surfaces consisting of arrays of actuators and sensors [55],
[56], [57]. These devices use the fingertip mechanoreceptors

without burdening the user’s hands. Soft touchable displays
allow installation of haptic interfaces in common touch areas,
like car steering wheels [33]. While not a haptic display, recent
work showed pneumatic actuators wrapped around robot arms
to visualize the weight load carried by the robot [64]. Based on
this past work, we target a touchable device placed at the point
of human-robot interaction, and use soft pneumatic actuation to
maximize the flexibility and transparency of the display.

III. DEVELOPING A WRAPPED HAPTIC DISPLAY

We first aim to design a soft haptic display that can wrap
around a robot arm, conforming to the surface and adding a
haptic interface to existing points of contact between the human
and robot. This section describes the identification of three
critical requirements (low volume, fast inflation, and textured
surface). With these requirements, we outline two designs built
on the same underlying principle: a 1-DoF display with a large
contact area and a N-DoF design with multiple, reduced-width,
“ring” sleeves. Finally, we describe the how these wrapped
haptics displays were implementated.

A. Requirements

While designing the wrapped haptic display concept we con-
sidered three key requirements to improve operation and the
haptic sensation: low volume, fast inflation, and textured surface.
First, the display should function without using large volumes
of air or static materials, keeping the display flexible enough
to easily wrap around objects like the robot arm. Limiting the
volume of air also aids in fast inflation and deflation, allowing
faster changes in the produced signals. Additionally, we aimed to
create an inflatable surface with textured tactile sensations. We
believe that a textured surface helps users to quickly identify
pressure changes in the display by exploring surface features.

B. Soft Haptic Display Concept

To address these requirements, we use thin, heat-sealable, and
inextensible materials that are formed into air-tight pouches and
heat-sealed with patterns. The heat sealed patterns subdivide
the bag, limiting the volume, adding texture, and keeping the
surface flexible when inflated. The final design consists of an
array of 2.54 cm square-shaped cells patterned into a low-density
polyethylene (LDPE) plastic tube, sealed using a linear heat
sealer (H-89 Foot-Operated Impulse Sealer, ULINE). A repeated
and homogeneous pattern with gaps in the seals between cells
allows for smooth and fast inflation. The square-array design
is shown in Fig. 2 in two form factors. The dimensions and
shape of the display can be varied to fit different applications and
surfaces. A unit of a soft wrapped haptic display consists of one
or more pouches attached to the same pressure source, forming
a degree of freedom (1-DoF). Multiple degrees of freedom can
be attached together to form an N degree of freedom (N-DoF)
display. Given this general description of the soft haptic display,
we will next describe the specific 1-DoF and 3-DoF displays
used in testing.
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Overview of the soft wrapped haptic display design. (a) Detailed view of square-cell array implemented in the 1-DoF sleeve display [8]. The thick lines

indicate places where the LDPE plastic tube was heat-sealed. The sleeve is composed of 3 pouches taped together to form a sleeve with circumference 27 R.
The sleeve display is shown (b) deflated and (c) inflated. (d) Detailed view of the square-cell array implemented in the 1-DoF ring display. Grouping multiple
individually-actuated pouches, placed side by side, forms a N-DoF wrapped haptic displays. A 3-DoF ring display is shown in two states: (e) deflated and (f) one

of the DoF (center) is actuated, while the others are deflated.

C. Large Surface Display

The 1-DoF soft wrapped haptic display was made from a set of
three connected pouches made from a 10.16 cm flat-width LDPE
tube (S-5522, ULINE). The LDPE tube matched the length of
one section of a UR-10 robotic arm (40.64 cm). The heat-sealed
lines are 1.27 cm long, alternated in rows and columns to create
the 2.54 cm-squares (Fig. 2(a)). Through-wall straight connec-
tors (5779K675, McMaster-Carr) were attached to one side of
each bag strip to allow for individual inflation. The display was
made of three bags taped together using viscoelastic adhesive
tape (MD-9000, Marker Tape) to construct a sleeve that matched,
and entirely wrapped, the cylindrical surface (Fig. 2(a)—(c)). The
bags were connected using tee-adapters and inflated using a
single pressure line (i.e. a 1-DoF soft wrapped haptic display).
The 1-DoF soft wrapped haptic display can be inflated quickly;
pressures above 1.5 psi (10.43 kPa) inflate in 0.86 seconds, the
pressure can be changed from 1 to 3 psi (6.89 to 20.68 kPa)
in 0.72 seconds, and deflate back to 1 psi in 0.18 seconds. The
display can operate to a maximum of 3.5 psi (24.13 kPa). Above
that pressure the heat-sealed edges begin to tear, producing leaks.

D. Multi-Degree of Freedom Display

We next increased the signal complexity while maintaining
the design requirements by building on the 1-DoF design. We
grouped multiple, individually-actuated pouches to form a N-
DoF wrapped haptic display, as shown in Fig. 2(d)—(f). Each
pouch consisted of a 2.54 cm flat-width LDPE tube (S-11155,
ULINE), cut to fit the circumference (27 R) of a segment on a
robot arm and form a ring-shaped haptic display. Grommets
were placed in the ends of the displays, and elastic bands
tied the device around the cylindrical surface. The pattern is
modified from the 1-DoF displays to better fit the LDPE tubing.
The 2.54 cm square cell grid was achieved by heat sealing
1.7 cm long lines across the length of the tube, alternating sides
(Fig. 2(d)). Silicon tubing (0.66 cm OD) was attached to an
end of the individual ring display to inflate. For the studies in

Sections VI and VII, three ring displays were placed side by
side. Separation between pouches (1.9 cm) is added to assist in
making the identification of each DoF easier. Since the N-DoF
display segments cover a smaller area, it is easier to mount them
in different places of the robot arm. Additionally, since the width
of these displays is smaller than the 1-Dof sleeve design, they
have smaller volume when inflated and resist higher pressures,
producing faster inflation/deflation speeds. These ring-shaped
soft wrapped haptic displays can be inflated to pressures above
1.5 psi (10.43 kPa) in 0.55 seconds, and withstand a maximum of
5 psi (34.48 kPa). Switching from 1 to 3 psi (6.89 to 20.68 kPa)
occured in 0.38 seconds, and the display deflate back to 1 psi in
0.12 seconds.

E. Implementation

The haptic displays were mounted on cylindrical surfaces
for the studies outlined in the following experiments, either
sections of the robot arms or a PVC pipe acting as a stand-in.
The mounting arrangements fixed the wrapped display in place,
restricting it to 10% contraction. The basic pneumatic control
systems used to actuate the wrapped haptic displays consisted of:
(1) apressure regulator that supplied an electronically controlled
pressurized-air supply and (2) a pressure release feature for
deflating the displays. Two different pressure regulators were
used. A pressure regulator with built in sensor and exhaust
(QB3, Proportion-Air, McCordsville, Indiana) was used for the
studies outlined in Sections IV and VI and was controlled using
an Arduino Uno via MATLAB. A different pressure regulator
(550-AID, ControlAir, Amherst, New Hampshire) was used
for the remaining experiments, controlled using the UR-10’s
1/0O controller (Section V) or an Arduino Uno (Section VII).
For this pressure regulator, the inflation pressure was measured
using an electronic pressure sensor (015SPGAAS, Honeywell
Sensing, Gold Valley, Minnesota). If faster switching between
inflation and full deflation is needed, on-off solenoid valves can
be implemented. It is important to note that each 1-DoF device
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Fig. 3. Experimental Setup. The participants were instructed to sit at the desk
right in front of the curtain and put on hearing protection headphones.

was connected to an individual pressure supply. For the case of
the 3-DoF display, one can configure the device to effectively act
as a 1-DoF device by connecting the individual rings to a single
pressure, or have 3-DoF control if three pressure regulators are
used.

IV. MEASURING HUMAN PERCEPTION OF 1-DOF WRAPPED
HAPTIC DISPLAYS

Understanding the human sensory perception of the soft dis-
play, especially compared to rigid haptic displays, is essential
in applying and controlling the wrapped haptic display. To that
end, we first conducted a psychometric user study to measure
the ability to distinguish display signals outside of the context
of the target scenario. Participants physically interacted with the
1-DoF display and were asked to distinguish between pairs of
pressures. We studied the user’s ability to differentiate inflation
levels in the display to understand what pressure differences
produce clear signals. This experiment was previously featured
in greater detail in our previous work [8].

A. Experiment Setup

The 1-DoF inflatable haptic display was mounted on a PVC
pipe matching the diameter of the UR-10 (Section V), and
the pipe was secured flat to the table. A curtain blocked the
user’s vision, and users wore hearing protection to ensure the
perception study focused on tactile sensations (Fig. 3).

The study was conducted as a forced-choice comparison
where participants were asked to identify the higher of two pres-
sures. Pressures were shown in pairs (i.e., reference pressure, P,
vs. test pressure, P), distinguished as “Pressure 1 and “Pressure
2”. We selected 2 psi (13.79 kPa) as the reference pressure, and
the test pressure values of 1.5, 1.75, 1.875, 2.0, 2.125, 2.25, and
2.5psi(10.34,12.07,12.93,13.79, 14.65, 15.51, and 17.93 kPa).
These pressures are within a safe operating range for the display.
We randomized the order in which the pairs were shown to the
participant, as well as the order of reference and test pressure in
each pair. As a note, in some pairs the reference pressure and
test pressure were both 2.0 psi to measure bias in participants’
choices when guessing.

The participants sat at the desk, and, before beginning the
experiments, we demonstrated the display function, allowing
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Fig. 4. Raw data and sigmoid function fit for the collection of responses
(orange) and each subject (grey). The percentages represent the proportion of
times subjects selected the test pressure, P, as higher. The INDs were calculated
using the sigmoid function to solve for the pressure value corresponding to the
75% threshold and subtracting it from the reference pressure. The dots represent
percentages associated with individual subject responses. The k steepness factor
for the overall sigmoid fit was 4.678, giving a JND of 0.235 psi. The individual
steepness factors ranged 2.477-11.15, with JNDs varying between 0.099 and
0.444 psi (0.68-3.06 kPa).

participants to interact with it. Each experimental trial began by
inflating the display to “Pressure 1. The participants were told
to interact with the display for an unrestricted period of time
and then release it. Then, the display was inflated to “Pressure
2, and the participants were asked to interact again. Once they
interacted with both pressures, we asked which one felt like a
higher inflation pressure. The subjects were not told the correct
answers. This procedure was repeated ten times each for the
seven test pressures. After completing the interaction portion,
the participants were given a post-experiment questionnaire
asking about their overall study experience and their previous
experiences with haptic technology, robotics, etc. The entire
experiment took approximately 35 minutes, with an optional
break.

B. Results

A total of 10 participants (4 female, 1 non-binary, 5 male,
average age 20.6 years, age range 18 — 23 years) participated in
this experiment after giving informed consent. Out of the group,
9 participants were right-handed, and 1 was left-handed. The
Purdue Institutional Review Board approved the study protocols.
Fig. 4 shows the subjects’ responses to the experiment. Each dot
shows the percentage of times the test pressure was selected
as higher when compared to the reference pressure. The just
noticeable difference (JND) was calculated by first fitting a
sigmoid function to the data:

100

e ) o

where ¢ is the modeled percentage of times the user chose the
test pressure (P) as higher, & is the steepness factor for fitting
a sigmoid curve, P is the test pressure, and F is the reference
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pressure. Using this fit, the JNDs are calculated by finding the
pressure value corresponding to the 75% threshold, Prs5, and
subtracting the reference pressure, Py:

1 100

JND = P75 — P, =
The sigmoid function was fit for each of the subjects, as well as
for the collection of responses from all subjects.

C. Analysis

The experimental results show that the k steepness factor for
the overall sigmoid fit (the orange line in Fig. 4) was 4.678, with
95% confidence bounds between 3.605 and 5.751, giving a JND
of 0.235 psi (1.62 kPa). Individual JNDs ranged 0.099-0.444 psi
(0.68-3.06 kPa). The mean JND was defined as the mean of
the values obtained for all participants, which was found to
be 0.228 psi (1.57 kPa) with a standard deviation of 0.109 psi
(0.75 kPa). The Weber fraction (WF), calculated as the ratio
of the JND and the reference pressure, ranged between 4.9%
and 22.2%, with a mean value of 11.4%. Although there was
no restriction on how the user could interact with the display,
multiple users reported using active interaction to explore the
display. This means that participants used reactive force sensing
to explore the dynamics of inflation and determine how much
pressure was used. Additionally, users reported mainly using
their fingertips. Previous studies on fingertip psychophysics
tests show similar results. Frediani and Carpi [65] conducted
psychophysical tests for a fingertip-mounted pneumatic hap-
tic display, reporting JNDs of 0.12-0.33 psi (0.8-2.3 kPa) for
pressures between 0.58 and 2.90 psi (4 and 20 kPa), yielding
a WF of 15%. A study evaluating a haptic jamming display
found fingertips WF to be 16% (0 = 7.4%) and 14.3% (o =
2.6%) for stiffness and size perception, respectively [66]. A dif-
ferent study testing stiffness perception for a rigid vibrotactile,
fingertip-mounted haptic device reported WF between 17.7 and
29.9% [67]. The INDs and WFs obtained in this study show
that our wrapped haptic display produced detectable signals and
matched previously found psychometric baselines.

As mentioned in Section IV-A, the reference pressure was
shown against itself 10 times to measure subject’s bias. Subjects
overall showed unbiased behavior, choosing “Pressure 17 45% of
the time and “Pressure 2 55% of the time. However, two subjects
had a large preference for choosing “Pressure 2” (80% of the
time when guessing). These subjects also scored the highest WF,
which may explain their higher bias when guessing compared
to the complete participant pool.

The qualitative data from the post-experiment questionnaire
shows that, besides the participants already mentioned (who had
the highest WF), no other participants struggled to identify the
pressures. A majority of the participants (7 out of 10) agreed that
they could detect the differences and that they were sure about
their answers. It is also worth noting that subjects with the high-
est performance reported dexterity-related skills, such as playing
string musical instruments, piano, knitting, and American Sign
Language proficiency.
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This study shows that the sensations produced by our wrapped
haptic display match the psychometric measures for other haptic
devices. Both quantitative and qualitative results show that users
were able to distinguish pressure changes over time without a
specific task context. Overall, we demonstrated that the soft-
wrapped haptic display can perform as well as other haptic
devices in displaying tactile signals.

D. Follow-Up Study

As timing became a significant factor during the later studies
in Sections V-VII, a follow-up study was conducted, replicating
the experimental procedure with the addition of a graphical
user interface (GUI). The purpose of the GUI was to enable
participants to control the pace of the experiment without the
influence of the experimenter and to allow accurate recording
of the time spent exploring each pressure. By evaluating time,
we can better understand later result on timing and difficulty of
interpreting haptic signals.

A total of 12 participants (6 female, 0 non-binary, 6 male,
average age 21.9 years, age range 21 — 23 years) participated in
the follow-up experiment after providing informed consent. Due
to technical difficulties in data collection, 2 participants were
removed from the study. 1 additional participant was excluded
from analysis as an outlier (performance equivalent to guessing).
Of the remaining 9 participants, 7 were right-handed, and 2 were
left-handed.

The results show a JND of 0.279 psi (1.923 kPa). Individual
JNDs ranged 0.114-0.674 psi (0.788-4.650 kPa), with a mean
JND of 0.310 psi (2.136 kPa) and standard deviation of 0.173 psi
(1.195 kPa). The WF ranged between 5.7% and 33.7%, with a
mean value of 15.5%, consistent with the initial study.

Participants spent an average of 13.84 s on the first pressure
(o0 = 7.323 s), and an average of 11.27 s on the second pres-
sure (o = 5.746 s), for an average of 25.11 s per pair (o =
10.855 s). By one-way ANOVA, total time spent per pair was
found to significantly impact correctness (p = 0.024). Subjects
spent significantly more time assessing the haptic device when
answering incorrectly (26.84 s) than when answering correctly
(24.56 s). Notably, mean time itself did not have a significant
influence on overall accuracy (p = 0.973).

V. APPLYING WRAPPED HAPTIC DISPLAYS TO COMMUNICATE
1-DOF ROBOT UNCERTAINTY

So far we have studied the precision with which humans
can perceive the 1-DoF wrapped haptic display. Next, we apply
this display to convey robot learning from physical interactions.
Section V presents a condensed version of the robot experiments
in [8], excluding some details on tasks, metrics, and procedure.
In this experiment participants kinesthetically taught a UR-10
robot arm to perform cleaning tasks. We applied an existing
learning algorithm to measure the robot’s uncertainty [11] and
then conveyed that uncertainty back to the human in real-time.
We highlight two key differences from the experiment in Sec-
tion IV: here the robot arm is moving during interaction (i.e., the
wrapped haptic display is not stationary), and the haptic display
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Fig. 5. Participant kinesthetically teaching the robot arm the Cleaning task.
(Top) We compared our proposed approach (Wrapped) to two alternatives.
GUI displayed the robot’s uncertainty on a screen, while in Flat we placed the
haptic display on table. (Bottom) We initialized the robot with data from known
segments. During their first demonstration the human attempted to identify the
region where the robot was uncertain (i.e., the new segment). The human then
gave a second demonstration where they only guided the robot through the
region(s) where they thought it was uncertain.

now conveys a specific signal that the human must interpret and
react to during interaction.

Independent Variables: We compared three different types of
feedback (see Fig. 5):

e A graphical user interface (GUI) that displayed the robot’s

uncertainty on a computer monitor.

e Qur soft haptic display placed Flat on the table.

® Our proposed approach where we Wrapped the haptic

display around the robot arm.

All three types of feedback showed the same information but
used different modalities. In the GUI baseline we displayed
uncertainty on a computer screen in front of the user. Here uncer-
tainty was shown as a percentage, where numbers close to 100%
indicated that the robot was uncertain at the current state. The
Flat and Wrapped interfaces used the 1-DoF soft haptic display
from Section III. Uncertainty was linearly scaled from 1 — 3 psi
(6.89 — 20.68 kPa). Here 1 psi (deflated bags) corresponded to
0% uncertainty and 3 psi (inflated bags) corresponded to 100%
uncertainty. The Flat haptic display was placed in a designated
area next to the human, such that participants could periodically
touch it during the experiment.

Experimental Setup: Participants completed three different
tasks with each of the three feedback conditions (i.e., nine total
trials). Tasks involved pushing, grasping, and moving objects
around a table and drawers. Fig. 5 shows an example task.

Before conducting any experiments we first initialized the
robot’s uncertainty. We collected five expert demonstrations
of each task and trained the robot with a behavior cloning
approach [11]. This approach outputs the robot’s uncertainty
at each state (i.e., uncertainty was a function of the robot’s
joint position). We purposely removed segments of the expert’s
demonstrations from the training set: specifically, we trained the
robot without showing it how to perform either the first segment
or the last segment of the task. As a result, when participants
interacted with the robot, the robot was uncertain about either
the start or the end of the task.

For each trial the participant provided two demonstrations.
First, the participant kinesthetically guided the robot throughout
the entire task while receiving real-time feedback from GUI,
Flat, or Wrapped. Based on this feedback, the participant
attempted to identify the region of the task where the robot was
uncertain (and needed additional teaching). During the second
demonstration, the human only taught the segment of the task
where they believed the robot was uncertain (i.e., the region
they identified in the first demonstration). If the feedback is
effective, participants should only reteach segments where the
robot is confused without repeating parts of the task that the
robot already knows.

Participants: We recruited 10 participants from the Virginia
Tech community to take part in our study (5 female, 0 non-binary,
5 male, average age 22.9, age range 19 — 26 years).

Dependent Measures: To measure how the robot’s feedback
affected the human’s teaching, we focused on the second demon-
stration (i.e., the demonstration where users retaught the uncer-
tain part of the task). We recorded the time users spent on this
second demonstration (7Teaching Time) and the percentage of this
second demonstration that overlapped with the segment where
the robot was actually uncertain (Correct Segment). Offline, we
retrained the robot using the participant’s second demonstration.
We then measured the percentage reduction in uncertainty due to
the user’s demonstration (Improvement). Finally, we also mea-
sured how users subjectively perceived each feedback method
using a 7-point Likert scale survey.

Hypotheses: We had two hypotheses for this user study:

H1. Participants will most efficiently teach the robot with wrapped
haptic displays.

H2. Participants will subjectively prefer our wrapped haptic display
over other methods.

Results: We summarize our aggregated results in Fig. 6.

We first ran a repeated measures ANOVA, and found that
the robot’s feedback type had a statistically significant effect on
Teaching Time, Correct Segment, and Improvement. Post hoc
analysis revealed that participants spent less time teaching the
robot with Wrapped than with either GUI or Flat (p < .05).
Participants also better focused their teaching on the region
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Objective and subjective results when communicating 1-DoF robot uncertainty in real-time with GUIL, Flat, and Wrapped feedback. Participants taught

the robot three tasks; we here report the aggregated results across tasks. Error bars show standard error of the mean (SEM), and * indicates statistically significant
comparisons (p < .05). (Left) Wrapping the haptic display around the robot arm caused participants to spend less time teaching the robot, focused their teaching
on regions where the robot was uncertain and improved the robot’s understanding of the task after the human’s demonstration. (Right) Participants thought that the
wrapped display best enabled them to focus on the task, and they preferred this feedback type to the alternatives.

where the robot was actually uncertain: Wrapped resulted in a
higher Correct Segment than Flat (p < .05). However, here the
differences between Wrapped and GUI were not statistically
significant (p = .287).

Recall that Improvement captures how much more confident
the robot is about the task after the participant’s demonstration.
This metric is especially important: we want to enable humans to
teach robots efficiently, and Improvement quantifies how much
the robot learned from the human’s teaching. We found that the
robot’s confidence improved the most in the Wrapped condition
as compared to either GUI or Flat (p < .05). Overall, these re-
sults support H1: when users get real-time feedback from a hap-
tic display wrapped around the robot arm, they provide shorter
duration kinesthetic demonstrations that more precisely hone in
on the robot’s uncertainty and efficiently correct the robot.

We next analyzed our Likert scale survey to understand how
users perceived each type of feedback. After confirming that
our six scales were reliable (using Cronbach’s «), we grouped
these scales into combined scores and ran a one-way repeated
measures ANOVA on each resulting score. Post hoc analysis
showed that participants thought that Wrapped was more in-
formative, easier to interact with, less distracting, and more
intuitive than either one or both of the alternatives (p < .05).
Participants also indicated that they preferred Wrapped over
GUI and Flat. When explaining this preference, one participant
said, “I definitely prefer Wrapped over other methods. I was
able to clearly focus and the other methods were distracting.”.
Our subjective results support H2, and indicate that users per-
ceived wrapped haptic displays as preferable when compared to
alternatives like visual interfaces. We also note that the overall
results from videos, user ratings, and teaching time indicate
that participants were able to detect Wrapped feedback during
their kinesthetic demonstrations, i.e., in Wrapped users did not
need to stop moving, explore the pouches, and then resume their
demonstration.

VI. MEASURING HUMAN PERCEPTION OF 3-DOF WRAPPED
HAPTIC DISPLAYS

Having explored the human perception and application of
the 1-DoF wrapped haptic display in the shape of a sleeve,

we next pursue a study that will help us understand how the
spatial distribution of displays affects the perception of both
1-DoF and multiple-DoF soft haptic displays. Both temporally
and spatially varying signals can help us add complexity when
we need to communicate multiple haptic signals within the space
that a human might contact. We also seek to understand how the
spatial distribution of signals might affect the effectiveness of the
display in terms of accuracy of identification and the time needed
to identify signals. To do so, we conducted a user study to mea-
sure the ability to distinguish haptic signals in different spatial
distributions and outside of the context of the target application
scenario. We select pressure levels considering the psychometric
baselines (JNDs) obtained in Section IV, and designed a study
in which participants physically interacted with 3-DoF displays.
The displays were arranged in two ways: (1) a 3-DoFring display
placed in a single location, and (2) three 1-DoF displays made up
of three rings each (by interconnecting the individual rings) and
placed at three different locations. We called these arrangements
Global (for the 3-DoF display), meaning all information was
available at the single point of contact, so it would be “globally”
available, and Local (for the three 1-DoF displays), meaning
the information for each degree of freedom was only available
locally. In each display, the user was asked to identify the signal
with the highest pressure out of the three, and we hypothesized
that the distribution of the signals (whether three in a single
location or spread over a distance) would affect performance.
As a note, these same methods are later used in the experiment
in Section VII, but there three of the Global displays are used
instead of one to keep the total area of the display on the robot
constant. This also allows different users to contact the robot arm
at different locations based on preference while still receiving
the same feedback.

A. Experiment Setup and Procedure

The 3-DoF wrapped haptic displays were mounted on passive
stand-ins. For the Local method, three stand-ins with three ring
displays configured as 1-DoF displays each were placed on
the table, with a separation in between each. For the Global
method, a single stand-in with a 3-DoF display was used. Both
methods essentially have 3-DoF, but the difference is the spatial
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Local

Fig. 7. Experimental Setup. (Top) The Local setup consists of three sets of
3-DoF displays configured as 1-DoF each, with a separation in between each.
(Middle) The Global setup consists of a single 3-DoF display. Both methods
essentially have 3-DoF, but the difference is the spatial distribution of each of
the DoF. The three DoF were named Left, Center, and Right, for both methods.
(Bottom) Participants were instructed to sit in front of the setup; here, we show
a participant interacting with the Local setup.

distribution of each of the degrees of freedom; for Global, all
signals are located in a small space, while for Local the signals
are distributed in a 1 m space. The three degrees of freedom were
named Left, Center, and Right, for both methods. The setups
are illustrated in Fig. 7. Participants were instructed to wear
hearing protection and safety glasses during the study. The task
was to identify which of the signals, Left, Center, or Right, was
inflated to the higher pressure. Two of the degrees of freedom
were inflated to a reference pressure P, (2 psi) and one to a high
pressure Py (2.75 psi). Subjects were not told that two degrees
of freedom had the same pressure, they were just instructed to
identify the one inflated to the different pressure. We selected
the P, and Py values based on the findings of the previous
pyschophysics study and taking into consideration that there
is an increase in the complexity of haptic signals for this new
study. As reported in Section IV-C, the average JND found in the
previous study was 0.228 psi. However, some of the participants
had JNDs almost double of the mean. With that in mind, we
determined that a pressure difference between the signals of AP
= 0.75 psi was large enough so that we could be sure all subjects
would perform to an adequate level in this study.

Each DoF (Left, Center, and Right) was rendered to the par-
ticipant as the Py a total of 16 times each, for a total of 48 trials.
The process was performed for both Global and Local methods.
Half of the participants completed the procedure with Global
first and the other half completed Local first. The study was as
follows. Participants were instructed to sit at the desk in front
of the arrangements. They interacted with a GUI developed in

LOCAL GLOBAL
R
E E
5 B c
wn n
L

Response Response

Fig. 8. Confusion matrices showing the mean accuracy for each signal ren-
dered (Left, Center, Right) in both methods (Local and Global).

MATLAB to navigate through the study. The GUI first guided the
participants through a demo to demonstrate the study procedure.
The GUI showed a red light that would turn green to indicate
when the participant was allowed to touch the displays. For
each of trial, the GUI asked the participant to click a “Next”
button to continue. Once clicked, the light would turn green once
the displays reached their corresponding steady-state pressures.
The participants were allowed to touch the displays for an
unrestricted period of time and they could explore the displays
using any method, including using both hands if desired. During
this time, the GUI displayed the question “Which one has the
different pressure?”, and showed options for Left, Center, and
Right. After the participants selected an option and confirmed by
clicking an “Enter” button, the GUI showed whether they were
correct and, if incorrect, what the right answer was. Note that
the GUI was configured to measure the participants’ response
time; an internal timer would start when the light turned green
and would stop when the participants answered the question.
To continue with the next trial, the participants then had to
press “Next.” The procedure was repeated until 48 trials were
completed for the first method and then for the second method.
Participants were offered a break halfway through each method
and another break in between methods. After completing the
interaction portion of the experiment, participants answered a
post-experiment questionnaire. The questionnaire asked about
how distinguishable the signals were, if they were often unsure
about their answers and if they were increasingly confident about
their answers as the study progressed. We also asked about
the overall experience during the study (clarity of instructions,
sense of safety during the experiment) and about their previous
experiences and familiarity with haptic technology, robotics, etc.
The study was 45 minutes long.

B. Results

We recruited 10 participants (4 female, O non-binary, 6 male,
average age 22.1 years, age range 19 — 25 years) from the
Purdue community. All participants completed the study after
giving informed consent. The Purdue Institutional Review Board
approved the study protocols (IRB #2021-1283). In the group,
9 participants were right-handed; one was left-handed.
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Fig.9. Experimental results. (Left) Count of incorrect guesses for each of the methods. A Wilcoxon signed-rank test showed that there is a significant association

between participants’ accuracy and methods (Z = —2.335, p <.05). (Center) Mean response time of individual participants for each method. Nine out of ten
participants had a higher response time using the Local method. (Right) Mean response time for both methods, displayed by signal type (Left, Center, Right).
Signal type had a statistically significant effect on response time (p = .047) but to a lesser extent than the method type (p <.001). For Global, participants spent
more time responding the question when the Left signal was the highest pressure than when it was Center (p <.01) or Right (p = .078).
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Fig. 10. Experimental setup and independent variables for the user study from Section VII. (Left) Participants physically demonstrated a mock welding task
to a Franka Emika robot arm. We mounted two lasers to the robot’s end-effector: the robot prompted human teachers to keep the end-effector and lasers at the
correct distance, height, and orientation. (Right) The robot indicated which feature(s) it needed help with using three different feedback modalities: GUI, Local,
and Global. For GUI the robot printed its percentage uncertainty about each feature on a computer monitor placed in front of the workstation. Both Local and
Global leveraged our wrapped haptic displays. In Local we attached three 1-DoF displays, and the location of the display indicated the desired feature. By contrast,

in Global we used three 3-DoF displays such that each row of the displays corresponded to a separate feature.

The confusion matrices in Fig. 8§ summarize the accuracy
of participants. Overall, participants’ accuracy was higher for
the Local method (average z = 96.25%, standard deviation
o = 3.88) than Global (z = 92.71%, o = 7.17). Participants
spent an average of 15.09 s (o = 7.55) using the Local method,
and 12.12 s (0 = 5.877) for Global. Interestingly, looking at
the complete pool of participants’ responses (whether global or
local), we found that participants had a greater response time
when they responded incorrectly (z = 16.89 s, 0 = 7.68 s) than
when they answered correctly (z = 13.41 s, 0 = 6.83). Fig. 9
shows the average time spent by each participant for both Local
and Global methods.

C. Analysis

The two quantitative measures that we used to understand
the results are Accuracy and Response Time. To further analyze
the accuracy of participants, a Wilcoxon signed-rank test was
conducted to understand the relation between accuracy and
the methods used. The results showed that there is a signif-
icant association between participants’ accuracy and methods

(Z = —2.335, p <.05). This means that although participants
responded faster to the task while using Global as shown by the
mean response time values, participants were not as accurate at
detecting the higher pressure as when they were using Local.
Fig. 9 shows the count of incorrect guesses for both Local
and Global methods. Another Wilcoxon test was conducted
to determine whether the order in which the experiments were
conducted (Local first, then Global, or vice-versa) affected sub-
jects’ accuracy. The results showed that there was no significant
association (Z = —0.143, p =.886), suggesting that subjects
did not benefit from learning to improve their accuracy for the
second half of the study.

To analyze response time, we used a one-way repeated mea-
sures ANOVA. We found that the method type had a statistically
significant effect on response time. Post hoc analysis revealed
that participants spent less time identifying the target signal
with Global as compared to Local (p <.001). This observa-
tion matches the mean values for the response time previously
mentioned and also the mean response time for each participant,
as shown in Fig. 9. Nine out of ten participants spent more time
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using Local compared to Global. We also found that the ren-
dered signal (whether Left, Center, or Right) had a statistically
significant effect on answering time (p =.047) but with a smaller
effect size than the method type. Data shows that while using
Global, participants spent more time responding when the Left
signal was the highest pressure than when it was Center (p <.01)
or Right (p =.078). For Local, we did not find any statistically
significant distinction between signals and their mean response
time. These results can be observed in Fig. 9, where we show the
response time of participants for each signal type (Left, Center,
Right) when using Local and Global methods.

This study shows that the spatial distribution of haptic displays
is an important factor to consider since it has an effect on both
accuracy of detection and response time. Using the psychometric
measures found in the previous study, we showed that partici-
pants were better able to identify the highest pressure out of a set
of three when the signals were spatially distributed (Local) than
when the signals were condensed in a smaller space (Global).
However, the response time for the spatially distributed signals
was higher; this makes sense because participants moved around
a larger space to interact with the places where the haptic signals
were located. Participants reported the pressure differences were
detectable, they were sure about their answers throughout the
experiment, and that they felt safe interacting with the displays.
Some participants mentioned that during the Local portion of the
experiment, they wished they could place the displays together
to make the exercise easier; this suggests that users consciously
thought that having displays dispersed in different locations was
aninconvenience, even though the results show participants were
slightly more accurate with this method than with Global. To
summarize, the Global method had the faster response time,
but Local had the higher accuracy. These observations show the
trade-off between response time and accuracy when we increase
the complexity of haptic signals in a smaller space or distribute
them in a larger space.

VII. USING MULTI-DOF WRAPPED HAPTIC DISPLAYS TO
COMMUNICATE 3-DOF ROBOT LEARNING

In Section V we demonstrated that robot arms can leverage a
haptic display to communicate with human teachers. However,
this haptic device only had 1-DoF: the same pressure was
rendered along the entire robot arm. One degree-of-freedom is
sufficient when the robot learner wants to convey whether or not
it is uncertain — but what if the robot needs to communicate
more complicated feedback? For instance, the robot may want
to indicate what it is confused about or ~ow the human teacher
could improve their demonstrations.

In our final user study we wrap multiple 3-DoF haptic dis-
plays around a Franka Emika robot arm. Participants physically
teach the robot to perform a mock welding task, and the robot
applies multi-dimensional feedback to indicate what aspects of
the task the human teacher must emphasize. Overall, our goal
is to compare the two different feedback distributions shown
in Section VI and understand how they impact the human’s
physical demonstrations. Remember that we are wrapping haptic
displays along the robot arm. One option is to localize different

signals to different parts of the arm, such that the place where
the bags inflate helps indicate and remind users what the robot
is uncertain about. Our second option is to distribute all three
signals along the entire arm; here the human perceives the same
haptic rendering no matter where they grasp the robot. In this
user study we explore how human teachers perceive and leverage
multiple displays that use both feedback layouts.

Independent Variables: Participants kinethetically guided the
robot arm through a mock welding task. The robot displayed
feedback in real-time to guide the human through the task. We
compared three different types of feedback for communicating
when the robot was uncertain and what motions it needed the
human teacher to emphasize (see Fig. 10):

e A GUI baseline where the robot showed its numerical

uncertainty on a computer monitor.

e Three 1-DoF wrapped haptic displays with signals local-

ized to different regions of the robot arm (Local).

e Three 3-DoF wrapped haptic displays with signals dis-

tributed across the entire robot arm (Global).

All conditions provided the same information to the partic-
ipants. Similar to Section V, in GUI the robot displayed its
uncertainties as a percentage: values close to 100% meant that
the robot needed assistance. For Local and Global we actuated
three separate wrapped haptic displays with pressures between
1-3 psi (6.89 — 20.68 kPa). In Local each location of the haptic
display had a single pressure signal; i.e., bags at the end-effector
were one pressure, bags at the base of the arm were another
pressure, and bags in the middle of the arm were a third pressure.
In Global each haptic display location rendered all three of the
potentially different pressures using three independent degrees
of freedom, and all Global displays rendered those same three
pressures — participants could feel the same feedback at the
base, middle, and end of the robot arm. GUI, Local, and Global
each provided a total of 3-DoF feedback. We emphasize that
with Global participants had to discern which segments of the
3-DoF haptic display were inflated, while with Local partici-
pants needed to determine at which parts of the robot arm the
haptic displays were inflated.

Experimental Setup: Participants physically interacted with a
7-DoF robot arm (Franka Emika) to complete a mock welding
task (see Fig. 10). Recall that users interacted with a UR10 robot
in Section V — from the user’s perspective, the Franka Emika
robot is smaller, has one more joint, and is easier to backdrive.
We mounted lasers to the robot’s end-effector: participants
kinesthetically guided the robot across a table while the lasers
marked where the robot was “welding.”

The welding task consisted of three features: how close the
end-effector was to the edge of the table, the end-effector’s height
from the table, and the orientation of the end-effector. When the
task started participants would guide the robot arm towards the
fixed goal position. As they moved, the robot would leverage
its feedback to notify the human which feature they needed to
emphasize. For example, during the first third of the task the
robot may prompt the human to keep the lasers close to the table;
in the middle of the task the human should move the end-effector
to the table edge; and during the final third of the task the human
might need to align the robot’s orientation. Participants had to
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TABLE I
QUESTIONS ON THE LIKERT SCALE SURVEY FROM SECTION VII. WE GROUPED QUESTIONS INTO FIVE SCALES AND EXAMINED THEIR RELIABILITY USING
CRONBACH’S c. QUESTIONS EXPLORED WHETHER PARTICIPANTS THOUGHT THE ROBOT’S FEEDBACK WAS EASY TO INTERPRET, IF THEY COULD FOCUS ON
TEACHING, HOW DISTINGUISHABLE THE ROBOT’S SIGNALS WERE, WHICH METHODS WERE INTUITIVE, AND THEIR OVERALL PREFERENCES. FOR PREFERENCE WE
DID NOT CHECK FOR RELIABILITY SINCE THERE WAS ONLY A SINGLE ITEM

Questionnaire Item Reliability  £'(2,22) p-value
— It was hard to figure out what the robot was trying to convey to me. 75 1.699 9206
— I could easily tell what the robot wanted. ' ' '

— I could focus on the robot’s feedback without having to look up or move my hands. 74 6.266 < 01
— I had to physically go out of my way to get the robot’s feedback. ' ' ’

— It was easy to distinguish the different feedback signals. 64 1.733 9215
— I had to think carefully about what I was seeing / feeling to determine the signal. ' ' '

— The way the robot provided feedback seemed intuitive to me. 36 081 993
— I thought the robot’s feedback was unintuitive and hard to understand. ’ ' ’

— Overall, T prefer this communication modality. — 5.189 191

We then performed a one-way repeated measures anova on the grouped scores: here an s denotes statistical significance.

dynamically determine what feature the robot currently needed
help with and then modify their motion to emphasize that feature.
Note that the robot asked for assistance with all three features at
different segments of the task — we randomized these segments
so that participants could not anticipate the robot’s feedback.

Participants and Procedure: We recruited 12 participants (5
female, 0 non-binary, 7 male, average age 28, age range 19 —
35 years) from the Virginia Tech community. All participants
provided informed written consent consistent with university
guidelines (IRB # 20-755). None of the participants for this
study took part in the previous study from Section V. Three of the
twelve participants reported that they had physically interacted
with robot arms before.

Each user completed the welding task four times. First, we
asked users to demonstrate the task without any feedback from
the robot. We used this initial demonstration as a baseline to
measure their improvement. Next, participants completed the
welding task with GUI, Local, and Global. We counterbalanced
the order of these feedback conditions: four participants started
with GUI, four participants started with Local, and four partic-
ipants started with Global.

Dependent Measures — Objective: We measured the total
time it took for participants to demonstrate the welding task
(Teaching Time). We also measured the Improvement between
the human’s initial demonstration and their demonstration under
each feedback condition. Let f(£) € R” be a k-length vector
of feature counts along trajectory &, e.g., the distance, height,
and angle. We define e(¢) = || f(€) — f(£7)||? as the error be-
tween the human’s demonstration £ and the ideal trajectory &*.
Improvement captures how this error changes after receiving
robot feedback: (e(&initial) — €(€))/€maz - 100, where €4, =
l£(0) — £(£*)|? is a normalizer (i.e., the error when the human
does not provide any demonstration). Improvement captures
the percentage change in demonstration quality for each feed-
back condition: positive Improvement reveals that the human is
demonstrating the task more accurately.

Dependent Measures — Subjective: Participants responded to
a 7-point Likert scale survey after each feedback condition. Our

survey was composed of four multi-item scales and one single-
item scale (see Table I). We asked participants how easy it was
to understand the robot’s feedback, whether they could focus
on the task, how distinguishable was the robot’s feedback, if
the feedback was intuitive for this task, and to what extent they
prefer this condition as a communication modality. Finally, after
participants had finished working with all the conditions they
responded to a forced-choice comparison: “Which method did
you like the most?”
Hypotheses: We had two hypotheses for this user study:

H3. Distributing multi-DoF haptic feedback along the robot arm
(Global) will lead to improved demonstrations and lower teaching
time.

H4. Participants will prefer distributed feedback (Global) as com-
pared to localized feedback (Local).

Results — Objective: The results from this user study are
summarized in Fig. 12. To get a sense of the users’ experience,
we also show participant demonstrations in Fig. 11.

Let us start our analysis by looking at the objective results.
Using a one-way repeated measures ANOVA, we determined
that feedback type had a significant effect on Teaching Time
(F(2,22) = 3.423, p < .05). Post hoc tests revealed that partic-
ipants spent less time demonstrating the task with Global than
with GUI (p < .05), while the differences between Global and
Local were not significant (p = .675). To explain these results
we measured the amount of idle time during the demonstration.
We found that with GUI users needed to stop, look at the monitor,
and think about their next action: shifting attention back-and-
forth between the monitor and the welding task contributed to
the increased Teaching Time.

So with Global, participants taught the robot more quickly
— but did they provide accurate, informative demonstrations?
Remember that to measure Improvement we first collected a
demonstration without feedback, and then compared that initial
demonstration to the user’s behavior under each condition. The
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t=10

GUI

Local

Fig. 11.

Participant teaching the welding task with GUL, Local, or Global. We show task progress in 5 s intervals. (Top) With GUI users needed to look at the

computer monitor to obtain feedback. The monitor is placed on the near side of the table: this participant is looking at the GUI at times ¢ = 5,¢ = 10, and ¢t = 25
seconds. (Middle) With Local, participants must move their hands — and change their grasp — to sense the different wrapped displays. This participant keeps one
hand on the end-effector, and then moves their other hand between the haptic displays at the middle and base of the robot arm. (Bottom) Finally, with Global the
participants receive feedback through 3-DoF Haptic displays. Global helped this user remain focused on the task: notice that they are continually looking at the
welding task, and keep both hands on the end-effector (where a 3-DoF haptic display is located).
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Fig. 12.  Objective and subjective results when communicating multi-dimensional robot feedback. We compared using a computer monitor (GUI), localizing
wrapped haptic feedback to specific parts of the robot (Local), and distributing 3-DoF feedback along the arm (Global). Error bars show standard error of the
mean and an * indicates statistically significant comparisons. (Left) Participants spent less time teaching the robot with Global as compared to GUI: shaded
regions show the amount of time where participants stopped moving the robot to think about their next actions. The human’s demonstrations improved more with
Global feedback as compared to Local feedback. (Middle) Participants perceived the multi-DoF wrapped haptic display as similar to the alternatives, but indicated
that Global enabled them to focus on teaching the robot. (Right) At the end of the experiment users were asked to choose their favorite method. Of the 12 total

participants, 8 selected Global, 4 selected GUI, and none selected Local.

type of robot feedback had a significant effect on Improvement
(F(2,22) = 12.707, p < .001). With both GUI and Global
the participants made similar improvements to their teaching
(p = .769). However, Improvement was significantly lower for
Local as compared to Global (p < .01). When participants
received Local feedback they frequently had to change their
grasp and move their hands across the three haptic displays; by
contrast, in GUI and Global the participants could maintain a
fixed grasp (Fig. 11). Overall, our objective results support H3.
Global enabled users to teach robots more seamlessly than GUI
and more accurately than Local.

Results — Subjective: Table I and Fig. 12 outline the results
of our Likert scale survey and forced-choice comparison. We

first checked the reliability of our four multi-item scales: easy,
focus, and intuitive were reliable (Cronbach’s o > 0.7) but
distinguish was not. We then grouped each scale into a combined
score and performed a one-way repeated measures ANOVA
on the result. Note that we did not check for reliability in
prefer because we only had one item (i.e., one question) on this
scale.

We found that participants perceived GUI, Local, and Global
to be similar along several axes. For instance, users did not
think that any of the feedback types were more distinguishable
(p = .215) or intuitive (p = .923) than the others. However,
users reported that they were better able to focus on the task
with Global than with GUI (p < .05) or with Local (p < .001).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 29,2023 at 16:16:03 UTC from IEEE Xplore. Restrictions apply.



70

After the experiment was finished we asked users to select their
favorite feedback type: eight of the twelve participants chose
Global, and the remaining four selected GUI. These subjective
results support H4. Given the results in Section VI, we were
particularly interested to find that participants preferred Global
feedback over Local feedback — this suggests that the conve-
nience of having all three signal available at each contact point
along the arm in the Global feedback condition outweighed the
slight decrease in accuracy. One participant mentioned that “/
liked Local the least, since it requires repositioning hands to get
feedback.”

VIII. CONCLUSION

In this paper we presented a novel approach for communicat-
ing a robot’s internal state during physical interaction. Specifi-
cally, we introduced a class of soft, wrapped haptic displays that
are mounted on the robot arm at the point of contact between
the human and robot; these displays provide real-time feedback
as the robot learns from human demonstrations.

We first designed wrapped pneumatic devices using flexible
pouches that render one or more pressure signals (Section III).
We performed psychophysics and robotics experiments with
(a) 1-DoF displays and (b) N-DoF displays. With the 1-DoF
display, humans could accurately distinguish between different
pressures rendered by the wrapped haptic display (Section IV).
This feedback enabled participants to kinethetically teach robot
arms more rapidly and effectively as compared to the alternatives
(Section V).

We next explored N-DoF haptic displays to communicate
more detailed feedback. We compared two approaches: local-
izing separate 1-DoF haptic displays to different regions of
the robot arm, or distributing identical 3-DoF displays along
the entire arm. From a psychophysics perspective, localized
feedback resulted in more accurate communication but at slower
speeds, i.e. larger spatially distribution of signals increased
accuracy, but required participants to move their hands to per-
ceive each region, and recognize the signal (Section VI). We
applied both types of haptic displays to a robot learning task.
Here we found that distributed 3-DoF signals were preferable to
localized 1-DoF signals in terms of teaching time, demonstration
improvement, and subjective responses (Section VII). We also
note that the results of our user studies were consistent across
two different industry-standard robot arms, suggesting that ap-
proach is not tied to one specific arm type or geometry. Overall,
using multi-DoF haptic displays to concentrate signals into a
smaller space resulted in more seamless communication and
teaching.

Future work will focus on further increasing the complex-
ity of signals that the soft wrapped haptic displays can ren-
der. The stacking of pneumatic pouches developed by Do
et al. [39] may allow better spatial resolution by eliciting sep-
arate force and contact area signals. The integration of sensing
technology to the concept of localized pressure distribution
may also allow us to break down local pressure measure-
ments (i.e. local user forces) and map them into desired robot
motions.
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